論文の概要: Provence: efficient and robust context pruning for retrieval-augmented generation
- arxiv url: http://arxiv.org/abs/2501.16214v1
- Date: Mon, 27 Jan 2025 17:06:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:57:05.793043
- Title: Provence: efficient and robust context pruning for retrieval-augmented generation
- Title(参考訳): Provence:検索強化生成のための効率的でロバストなコンテキストプルーニング
- Authors: Nadezhda Chirkova, Thibault Formal, Vassilina Nikoulina, Stéphane Clinchant,
- Abstract要約: Provence (Pruning and Re rank of retrieVEd relevaNt ContExts) は質問応答のための効率的で堅牢なコンテキストプラナーである。
Provenceの3つの重要な要素は、シーケンスラベリング、コンテキストの再ランク付きコンテキストプルーニング機能の統合、多様なデータのトレーニングである。
実験の結果,Provenceは標準的なRAGパイプラインではほとんどコストがかからず,さまざまなドメインや設定において,パフォーマンスの低下を無視してコンテキストプルーニングを可能にすることがわかった。
- 参考スコア(独自算出の注目度): 26.206256814518174
- License:
- Abstract: Retrieval-augmented generation improves various aspects of large language models (LLMs) generation, but suffers from computational overhead caused by long contexts as well as the propagation of irrelevant retrieved information into generated responses. Context pruning deals with both aspects, by removing irrelevant parts of retrieved contexts before LLM generation. Existing context pruning approaches are however limited, and do not provide a universal model that would be both efficient and robust in a wide range of scenarios, e.g., when contexts contain a variable amount of relevant information or vary in length, or when evaluated on various domains. In this work, we close this gap and introduce Provence (Pruning and Reranking Of retrieVEd relevaNt ContExts), an efficient and robust context pruner for Question Answering, which dynamically detects the needed amount of pruning for a given context and can be used out-of-the-box for various domains. The three key ingredients of Provence are formulating the context pruning task as sequence labeling, unifying context pruning capabilities with context reranking, and training on diverse data. Our experimental results show that Provence enables context pruning with negligible to no drop in performance, in various domains and settings, at almost no cost in a standard RAG pipeline. We also conduct a deeper analysis alongside various ablations to provide insights into training context pruners for future work.
- Abstract(参考訳): Retrieval-augmented generationは、大規模言語モデル(LLM)生成の様々な側面を改善するが、長いコンテキストによって引き起こされる計算オーバーヘッドと、無関係に取得された情報が生成された応答に伝搬することに悩まされる。
コンテキストプルーニングは、LLM生成の前に検索されたコンテキストの無関係な部分を削除することによって、両方の側面を扱う。
しかし、既存のコンテキストプルーニングアプローチは限定的であり、コンテキストが関連する情報の可変量を含む場合や、様々なドメインで評価される場合など、幅広いシナリオにおいて効率的かつ堅牢なユニバーサルモデルを提供しない。
本稿では,このギャップを埋めて Provence (Pruning and Re rank of retrieVEd relevaNt ContExts) を導入する。これは質問応答のための効率的で堅牢なコンテキストプラナーである。
Provenceの3つの重要な要素は、コンテキストプルーニングタスクをシーケンスラベリング、コンテキスト再ランク付きコンテキストプルーニング機能の統合、さまざまなデータのトレーニングである。
実験の結果,Provenceは標準的なRAGパイプラインではほとんどコストがかからず,さまざまなドメインや設定において,パフォーマンスの低下を無視してコンテキストプルーニングを可能にすることがわかった。
将来的な作業のためのトレーニングコンテキストプルーナーに関する洞察を提供するため、さまざまなアブリケーションとともにより深い分析も行います。
関連論文リスト
- Emulating Retrieval Augmented Generation via Prompt Engineering for Enhanced Long Context Comprehension in LLMs [23.960451986662996]
本稿では,レトリーバル拡張生成(RAG)を特殊エンジニアリングとチェーンオブ思考推論によりエミュレートする手法を提案する。
我々は,BABILong から選択したタスクに対するアプローチを評価し,大量の散逸テキストを用いた標準 bAbI QA 問題をインターリーブする。
論文 参考訳(メタデータ) (2025-02-18T02:49:40Z) - Re-ranking the Context for Multimodal Retrieval Augmented Generation [28.63893944806149]
Retrieval-augmented Generation (RAG)は、文脈内で応答を生成するために外部知識を組み込むことで、大きな言語モデル(LLM)を強化する。
RAGシステムは固有の課題に直面している: (i) 検索プロセスはユーザクエリ(画像、文書など)への無関係なエントリを選択することができ、 (ii) 視覚言語モデルや GPT-4o のようなマルチモーダル言語モデルは、RAG出力を生成するためにこれらのエントリを処理する際に幻覚を与える。
より高度な関連性尺度を用いることで、知識ベースからより関連性の高い項目を選択して排除することにより、検索プロセスを強化することができることを示す。
論文 参考訳(メタデータ) (2025-01-08T18:58:22Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
検索拡張世代(RAG)は,外部知識ソースを統合することで言語モデルを強化する強力なアプローチとして注目されている。
本稿では、リアルタイム検索をバイパスする代替パラダイムであるキャッシュ拡張生成(CAG)を提案する。
論文 参考訳(メタデータ) (2024-12-20T06:58:32Z) - Context-DPO: Aligning Language Models for Context-Faithfulness [80.62221491884353]
本研究では,大規模言語モデルの文脈信頼度を高めるためのアライメント手法を提案する。
ConFiQAから提供されたコンテキストの質問に対する忠実で頑健な応答を活用することで、Context-DPOは直接の選好最適化を通じてLLMを調整します。
大規模な実験により、私たちのContext-DPOは、一般的なオープンソースモデルで35%から280%の改善を達成し、コンテキスト忠実性を大幅に改善します。
論文 参考訳(メタデータ) (2024-12-18T04:08:18Z) - A Controlled Study on Long Context Extension and Generalization in LLMs [85.4758128256142]
広義のテキスト理解とテキスト内学習は、完全な文書コンテキストを利用する言語モデルを必要とする。
長期コンテキストモデルを直接訓練する際の実装上の課題のため、長期コンテキストを扱うためにモデルを拡張する多くの方法が提案されている。
我々は,一貫したベースモデルと拡張データを利用して,標準化された評価による拡張メソッドの制御プロトコルを実装した。
論文 参考訳(メタデータ) (2024-09-18T17:53:17Z) - Better RAG using Relevant Information Gain [1.5604249682593647]
大きな言語モデル(LLM)のメモリを拡張する一般的な方法は、検索拡張生成(RAG)である。
本稿では,検索結果の集合に対するクエリに関連する総情報の確率的尺度である,関連情報ゲインに基づく新しい単純な最適化指標を提案する。
RAGシステムの検索コンポーネントのドロップイン置換として使用すると、質問応答タスクにおける最先端のパフォーマンスが得られる。
論文 参考訳(メタデータ) (2024-07-16T18:09:21Z) - Improving Retrieval Augmented Open-Domain Question-Answering with Vectorized Contexts [83.57864140378035]
本稿では,オープンドメイン質問応答タスクにおいて,より長いコンテキストをカバーできる手法を提案する。
コンテキストを効果的にエンコードする小さなエンコーダ言語モデルを利用し、エンコーダは元の入力とクロスアテンションを適用する。
微調整後、2つのホールドインデータセット、4つのホールドアウトデータセット、および2つのIn Context Learning設定のパフォーマンスが改善された。
論文 参考訳(メタデータ) (2024-04-02T15:10:11Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z) - Learning to Filter Context for Retrieval-Augmented Generation [75.18946584853316]
生成モデルは、部分的にまたは完全に無関係な経路が与えられた出力を生成するために要求される。
FILCOは、語彙と情報理論のアプローチに基づいて有用なコンテキストを特定する。
テスト時に検索したコンテキストをフィルタリングできるコンテキストフィルタリングモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-11-14T18:41:54Z) - Generation-Augmented Retrieval for Open-domain Question Answering [134.27768711201202]
GAR(Generation-Augmented Retrieval)は、オープンドメインの質問に答える機能である。
クエリーに対して多様なコンテキストを生成することは、結果の融合が常により良い検索精度をもたらすので有益であることを示す。
GARは、抽出読取装置を備えた場合、抽出QA設定の下で、自然質問およびトリビアQAデータセットの最先端性能を達成する。
論文 参考訳(メタデータ) (2020-09-17T23:08:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。