Align-Pro: A Principled Approach to Prompt Optimization for LLM Alignment
- URL: http://arxiv.org/abs/2501.03486v1
- Date: Tue, 07 Jan 2025 03:14:39 GMT
- Title: Align-Pro: A Principled Approach to Prompt Optimization for LLM Alignment
- Authors: Prashant Trivedi, Souradip Chakraborty, Avinash Reddy, Vaneet Aggarwal, Amrit Singh Bedi, George K. Atia,
- Abstract summary: Large language models (LLMs) are increasingly integrated into various societal and decision-making processes.
Traditional methods, such as reinforcement learning from human feedback (RLHF), achieve alignment by fine-tuning model parameters.
In contrast, prompt optimization is a viable alternative to RLHF for LLM alignment.
- Score: 40.71270945505082
- License:
- Abstract: The alignment of large language models (LLMs) with human values is critical as these models become increasingly integrated into various societal and decision-making processes. Traditional methods, such as reinforcement learning from human feedback (RLHF), achieve alignment by fine-tuning model parameters, but these approaches are often computationally expensive and impractical when models are frozen or inaccessible for parameter modification. In contrast, prompt optimization is a viable alternative to RLHF for LLM alignment. While the existing literature has shown empirical promise of prompt optimization, its theoretical underpinning remains under-explored. We address this gap by formulating prompt optimization as an optimization problem and try to provide theoretical insights into the optimality of such a framework. To analyze the performance of the prompt optimization, we study theoretical suboptimality bounds and provide insights in terms of how prompt optimization depends upon the given prompter and target model. We also provide empirical validation through experiments on various datasets, demonstrating that prompt optimization can effectively align LLMs, even when parameter fine-tuning is not feasible.
Related papers
- Reward-aware Preference Optimization: A Unified Mathematical Framework for Model Alignment [45.45508377432791]
This paper introduces Reward-Aware Preference Optimization (RPO), a mathematical framework that unifies popular preference optimization techniques.
RPO provides a structured approach to disentangle and systematically study the impact of various design choices.
We propose a new experimental setup that enables the clean and direct ablation of such design choices.
arXiv Detail & Related papers (2025-01-31T22:39:04Z) - Accelerated Preference Optimization for Large Language Model Alignment [60.22606527763201]
Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal tool for aligning large language models (LLMs) with human preferences.
Direct Preference Optimization (DPO) formulates RLHF as a policy optimization problem without explicitly estimating the reward function.
We propose a general Accelerated Preference Optimization (APO) framework, which unifies many existing preference optimization algorithms.
arXiv Detail & Related papers (2024-10-08T18:51:01Z) - AIPO: Improving Training Objective for Iterative Preference Optimization [34.24211649396053]
We study iterative preference optimization with synthetic data.
We propose our training objective for iterative preference optimization, namely Agreement-aware Iterative Preference Optimization (AIPO)
arXiv Detail & Related papers (2024-09-13T14:03:49Z) - OptiBench Meets ReSocratic: Measure and Improve LLMs for Optimization Modeling [62.19438812624467]
Large language models (LLMs) have exhibited their problem-solving abilities in mathematical reasoning.
We propose OptiBench, a benchmark for End-to-end optimization problem-solving with human-readable inputs and outputs.
arXiv Detail & Related papers (2024-07-13T13:27:57Z) - Large Language Model-Based Evolutionary Optimizer: Reasoning with
elitism [1.1463861912335864]
Large Language Models (LLMs) have demonstrated remarkable reasoning abilities.
This paper asserts that LLMs possess the capability for zero-shot optimization across diverse scenarios.
We introduce a novel population-based method for numerical optimization using LLMs.
arXiv Detail & Related papers (2024-03-04T13:57:37Z) - FIPO: Free-form Instruction-oriented Prompt Optimization with Preference Dataset and Modular Fine-tuning Schema [36.65009632307124]
We propose Free-from Instruction-oriented Prompt Optimization (FIPO) to improve task performance of large language models (LLMs)
FIPO uses a modular APO template that dynamically integrate the naive task instruction, optional instruction responses, and optional ground truth to produce finely optimized prompts.
We validate FIPO framework across five public benchmarks and six testing models.
arXiv Detail & Related papers (2024-02-19T03:56:44Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
We show how structure can enable sample-efficient data-driven optimization.
We also present a data-driven optimization algorithm that infers the FGM structure itself.
arXiv Detail & Related papers (2024-01-08T22:33:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.