論文の概要: Echoes of Discord: Forecasting Hater Reactions to Counterspeech
- arxiv url: http://arxiv.org/abs/2501.16235v1
- Date: Mon, 27 Jan 2025 17:33:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:57:04.467927
- Title: Echoes of Discord: Forecasting Hater Reactions to Counterspeech
- Title(参考訳): 反響のエコー:反響に対するヘイター反応を予測
- Authors: Xiaoying Song, Sharon Lisseth Perez, Xinchen Yu, Eduardo Blanco, Lingzi Hong,
- Abstract要約: 本研究は,反響がヘイターに会話の再入会を誘導するか否か,また再入会が憎悪であるか否かに焦点を当てる。
ヘイトデータセット(ReEco)のReddit Echoesをコンパイルします。
言語分析は、異なる憎しみの反応を引き出すことを嫌う反音声の言語についての洞察を隠している。
- 参考スコア(独自算出の注目度): 10.658005418397748
- License:
- Abstract: Hate speech (HS) erodes the inclusiveness of online users and propagates negativity and division. Counterspeech has been recognized as a way to mitigate the harmful consequences. While some research has investigated the impact of user-generated counterspeech on social media platforms, few have examined and modeled haters' reactions toward counterspeech, despite the immediate alteration of haters' attitudes being an important aspect of counterspeech. This study fills the gap by analyzing the impact of counterspeech from the hater's perspective, focusing on whether the counterspeech leads the hater to reenter the conversation and if the reentry is hateful. We compile the Reddit Echoes of Hate dataset (ReEco), which consists of triple-turn conversations featuring haters' reactions, to assess the impact of counterspeech. The linguistic analysis sheds insights on the language of counterspeech to hate eliciting different haters' reactions. Experimental results demonstrate that the 3-way classification model outperforms the two-stage reaction predictor, which first predicts reentry and then determines the reentry type. We conclude the study with an assessment showing the most common errors identified by the best-performing model.
- Abstract(参考訳): ヘイトスピーチ(HS)は、オンラインユーザーの包括性を損なうとともに、否定性と分裂を広める。
カウンタースピーチは有害な結果を軽減する方法として認識されている。
ソーシャルメディアプラットフォームに対するユーザ生成の反響の影響を調査する研究もあるが、反響の重要な側面である憎しみの態度の即時的な変化にもかかわらず、反響に対する憎しみの反応を調査・モデル化する研究は少ない。
本研究は, ハザードの視点から反音声の影響を解析し, 反音声がハザードに再入会を誘導するか否か, 再入会が憎悪であるか否かに着目し, ギャップを埋めるものである。
Reddit Echoes of Hate dataset (ReEco)は、憎しみの反応を特徴とする3ターン会話で構成され、反音声の影響を評価する。
言語分析は、異なる憎しみの反応を引き出すことを嫌う反音声の言語についての洞察を隠している。
実験結果から,3方向分類モデルは2段階反応予測器よりも優れており,まず再突入を予測し,再突入型を決定する。
本研究は,最良性能モデルで同定される最も一般的な誤りを評価した結果で締めくくった。
関連論文リスト
- Hostile Counterspeech Drives Users From Hate Subreddits [1.5035331281822]
我々は、Redditにおけるヘイトサブレディット内の新参者に対する反音声の効果を分析した。
非敵対的なカウンタースピーチは、ユーザーがこれらの憎悪のサブレディットから完全に切り離すのを防ぐのに効果がない。
単一の敵対的な反論は、将来のエンゲージメントの可能性を大幅に減らす。
論文 参考訳(メタデータ) (2024-05-28T17:12:41Z) - Behind the Counter: Exploring the Motivations and Barriers of Online Counterspeech Writing [6.790819952175892]
オンラインヘイトを標的にしていたことは、オンラインの反響行為を頻繁に起こす重要な要因だ。
人々は、異なる人口集団でオンラインのカウンタースピーチに参加するためのモチベーションと障壁が異なる。
論文 参考訳(メタデータ) (2024-03-25T18:56:35Z) - Hatred Stems from Ignorance! Distillation of the Persuasion Modes in Countering Conversational Hate Speech [0.0]
本研究は、説得モードを理性、感情、信頼性に蒸留する。
クローズド(複数ターン)とオープン(単ターン)の2つのタイプの会話において、人種差別、セクシズム、宗教的偏見に関する使用を評価している。
論文 参考訳(メタデータ) (2024-03-18T07:20:35Z) - Beyond Denouncing Hate: Strategies for Countering Implied Biases and
Stereotypes in Language [18.560379338032558]
我々は、心理学と哲学文学から、ヘイトフル言語の基礎となるステレオタイプ的含意に挑戦するために、6つの心理的にインスパイアされた戦略を構築する。
提案手法では,機械が生成する対音声はより具体的でない戦略を用いるのに対し,人間による対音声はインプリッドステレオタイプに特有な戦略を用いる。
以上の結果から,音声の反音声発生におけるステレオタイプ的含意の考慮の重要性が示唆された。
論文 参考訳(メタデータ) (2023-10-31T21:33:46Z) - Measuring the Effect of Influential Messages on Varying Personas [67.1149173905004]
我々は、ニュースメッセージを見る際にペルソナが持つ可能性のある応答を推定するために、ニュースメディア向けのペルソナに対するレスポンス予測という新しいタスクを提示する。
提案課題は,モデルにパーソナライズを導入するだけでなく,各応答の感情極性と強度も予測する。
これにより、ペルソナの精神状態に関するより正確で包括的な推測が可能になる。
論文 参考訳(メタデータ) (2023-05-25T21:01:00Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Characterizing the adversarial vulnerability of speech self-supervised
learning [95.03389072594243]
我々は,ゼロ知識とリミテッド知識の両方の敵からの攻撃の下で,そのようなパラダイムの敵対的脆弱性を調査するための最初の試みを行う。
実験結果から, SUPERB が提案するパラダイムは, 限られた知識を持つ敵に対して脆弱であることが示唆された。
論文 参考訳(メタデータ) (2021-11-08T08:44:04Z) - Hate Speech Classifiers Learn Human-Like Social Stereotypes [4.132204773132937]
社会的ステレオタイプは、異なるグループについての個人の判断に悪影響を及ぼす。
社会的ステレオタイプは、人々が少数民族社会グループに向けられた言語をどのように理解するかにおいて重要な役割を担っている。
論文 参考訳(メタデータ) (2021-10-28T01:35:41Z) - Learning Explicit Prosody Models and Deep Speaker Embeddings for
Atypical Voice Conversion [60.808838088376675]
本稿では,明示的な韻律モデルと深層話者埋め込み学習を用いたVCシステムを提案する。
韻律補正器は音素埋め込みを取り入れ、典型的な音素持続時間とピッチ値を推定する。
変換モデルは、音素埋め込みと典型的な韻律特徴を入力として、変換された音声を生成する。
論文 参考訳(メタデータ) (2020-11-03T13:08:53Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
新型コロナウイルスは、アジアのコミュニティをターゲットにしたソーシャルメディア上で人種差別や憎悪を引き起こしている。
我々は、Twitterのレンズを通して、反アジアヘイトスピーチの進化と普及について研究する。
私たちは、14ヶ月にわたる反アジア的憎悪と反音声のデータセットとして最大となるCOVID-HATEを作成します。
論文 参考訳(メタデータ) (2020-05-25T21:58:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。