論文の概要: CounterQuill: Investigating the Potential of Human-AI Collaboration in Online Counterspeech Writing
- arxiv url: http://arxiv.org/abs/2410.03032v1
- Date: Thu, 3 Oct 2024 22:29:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 04:25:56.021909
- Title: CounterQuill: Investigating the Potential of Human-AI Collaboration in Online Counterspeech Writing
- Title(参考訳): CounterQuill:オンライン対音声書記における人間とAIの連携の可能性を探る
- Authors: Xiaohan Ding, Kaike Ping, Uma Sushmitha Gunturi, Buse Carik, Sophia Stil, Lance T Wilhelm, Taufiq Daryanto, James Hawdon, Sang Won Lee, Eugenia H Rho,
- Abstract要約: 本稿では,AIを利用した音声合成システムであるCounterQuillを紹介する。
CounterQuillは,(1)ヘイトスピーチや反音声を理解するための学習セッション,(2)ヘイトスピーチの重要要素を特定し,対音声戦略を探求するブレーンストーミングセッション,(3)ユーザがCounterQuillと対音声の草案作成と洗練を可能にする共同執筆セッション,の3段階のプロセスを提供する。
- 参考スコア(独自算出の注目度): 6.929003593008481
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online hate speech has become increasingly prevalent on social media platforms, causing harm to individuals and society. While efforts have been made to combat this issue through content moderation, the potential of user-driven counterspeech as an alternative solution remains underexplored. Existing counterspeech methods often face challenges such as fear of retaliation and skill-related barriers. To address these challenges, we introduce CounterQuill, an AI-mediated system that assists users in composing effective and empathetic counterspeech. CounterQuill provides a three-step process: (1) a learning session to help users understand hate speech and counterspeech; (2) a brainstorming session that guides users in identifying key elements of hate speech and exploring counterspeech strategies; and (3) a co-writing session that enables users to draft and refine their counterspeech with CounterQuill. We conducted a within-subjects user study with 20 participants to evaluate CounterQuill in comparison to ChatGPT. Results show that CounterQuill's guidance and collaborative writing process provided users a stronger sense of ownership over their co-authored counterspeech. Users perceived CounterQuill as a writing partner and thus were more willing to post the co-written counterspeech online compared to the one written with ChatGPT.
- Abstract(参考訳): オンラインヘイトスピーチはソーシャルメディアプラットフォームでますます広まり、個人や社会に害を与えている。
コンテンツモデレーションを通じてこの問題に対処する努力が続けられている一方で、代替ソリューションとしてのユーザー主導の対応の可能性はいまだ検討されていない。
既存のカウンター音声法は、報復を恐れたり、スキルに関連した障壁に直面することが多い。
これらの課題に対処するため,我々は,AIを利用した音声合成システムであるCounterQuillを紹介した。
CounterQuillは,(1)ヘイトスピーチや反音声を理解するための学習セッション,(2)ヘイトスピーチの重要要素を特定し,対音声戦略を探求するブレーンストーミングセッション,(3)ユーザがCounterQuillと対音声の草案作成と洗練を可能にする共同執筆セッション,の3段階のプロセスを提供する。
被験者20名を対象に,ChatGPTと比較してCounterQuillの評価を行った。
その結果、CounterQuillのガイダンスとコラボレーティブな書き込みプロセスにより、ユーザーは共著のカウンター音声よりも強いオーナシップを得られることがわかった。
ユーザーはCounterQuillを執筆パートナーと認識し、ChatGPTで書かれたものに比べて、共同執筆のカウンター音声をオンラインで投稿する意思があった。
関連論文リスト
- Generative AI may backfire for counterspeech [20.57872238271025]
我々は、最先端AIが生み出す文脈化された逆音声が、オンラインヘイトスピーチを抑制するのに有効であるかどうかを分析する。
その結果,非コンテクスチュアライズされた対応音声は,オンラインヘイトスピーチを著しく減少させることがわかった。
しかし、LLMsによって生成される文脈化された反音声は効果が無く、バックファイアさえも生じうる。
論文 参考訳(メタデータ) (2024-11-22T14:47:00Z) - Rescuing Counterspeech: A Bridging-Based Approach to Combating Misinformation [0.0]
我々は、ブリジングベースのランキングは、反音声の戦闘誤報を支援するための有望なアプローチであると主張している。
同意する傾向にあるユーザと、偽情報に同意しない傾向にあるユーザの両方に好まれる反響を識別することにより、ブリッジングは、誤報を信じる可能性が最も高いユーザを説得する反響を促進する。
論文 参考訳(メタデータ) (2024-10-16T16:02:39Z) - Moshi: a speech-text foundation model for real-time dialogue [78.88479749811376]
現在の音声対話システムは、パイプラインの独立した音声活動検出と音声合成に依存している。
そこで本研究では,Moshi Moshiが音声認識と音声合成を実現する方法を紹介する。
得られたモデルは、初めてリアルタイムな全音声大言語モデルモダリティである。
論文 参考訳(メタデータ) (2024-09-17T17:55:39Z) - Behind the Counter: Exploring the Motivations and Barriers of Online Counterspeech Writing [6.790819952175892]
オンラインヘイトを標的にしていたことは、オンラインの反響行為を頻繁に起こす重要な要因だ。
人々は、異なる人口集団でオンラインのカウンタースピーチに参加するためのモチベーションと障壁が異なる。
論文 参考訳(メタデータ) (2024-03-25T18:56:35Z) - DisCGen: A Framework for Discourse-Informed Counterspeech Generation [34.75404551612012]
本稿では,言論理論に基づく枠組みを提案し,反声と憎しみのあるコメントを結びつける推論リンクについて検討する。
本稿では,Reddit から現在地にある反音声のデータセットを収集するプロセスを提案する。
提案するデータセットとフレームワークを用いて,大規模言語モデルを用いて,談話理論に基づいて文脈的に接地した対音声を生成することができることを示す。
論文 参考訳(メタデータ) (2023-11-29T23:20:17Z) - Understanding Counterspeech for Online Harm Mitigation [12.104301755723542]
Counterspeechは、憎悪の犯人に挑戦し、虐待の標的への支援を示すことによって、憎悪の言葉に対する直接の反論を提供する。
コンテンツモデレーションやデプラットフォームといった、より論争的な手段に代わる、有望な代替手段を提供する。
本稿では,社会科学における反音声研究を体系的にレビューし,自動対音声生成における方法論と知見をコンピュータ科学の取り組みと比較する。
論文 参考訳(メタデータ) (2023-07-01T20:54:01Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - Emotion Selectable End-to-End Text-based Speech Editing [63.346825713704625]
Emo-CampNet (Emotion CampNet) は感情選択可能なテキストベースの音声編集モデルである。
テキストベースの音声編集において、生成した音声の感情を効果的に制御することができる。
未知の話者のスピーチを編集することもできる。
論文 参考訳(メタデータ) (2022-12-20T12:02:40Z) - Persua: A Visual Interactive System to Enhance the Persuasiveness of
Arguments in Online Discussion [52.49981085431061]
説得力のある議論を書く能力を高めることは、オンラインコミュニケーションの有効性と文明性に寄与する。
オンライン議論における議論の説得力向上を支援するツールの設計目標を4つ導き出した。
Persuaは対話型ビジュアルシステムであり、議論の説得力を高めるための説得戦略の例に基づくガイダンスを提供する。
論文 参考訳(メタデータ) (2022-04-16T08:07:53Z) - Speaker De-identification System using Autoencoders and Adversarial
Training [58.720142291102135]
本稿では,対人訓練とオートエンコーダに基づく話者識別システムを提案する。
実験結果から, 対向学習とオートエンコーダを組み合わせることで, 話者検証システムの誤り率が同等になることがわかった。
論文 参考訳(メタデータ) (2020-11-09T19:22:05Z) - Learning Explicit Prosody Models and Deep Speaker Embeddings for
Atypical Voice Conversion [60.808838088376675]
本稿では,明示的な韻律モデルと深層話者埋め込み学習を用いたVCシステムを提案する。
韻律補正器は音素埋め込みを取り入れ、典型的な音素持続時間とピッチ値を推定する。
変換モデルは、音素埋め込みと典型的な韻律特徴を入力として、変換された音声を生成する。
論文 参考訳(メタデータ) (2020-11-03T13:08:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。