A foundation model for human-AI collaboration in medical literature mining
- URL: http://arxiv.org/abs/2501.16255v1
- Date: Mon, 27 Jan 2025 17:55:37 GMT
- Title: A foundation model for human-AI collaboration in medical literature mining
- Authors: Zifeng Wang, Lang Cao, Qiao Jin, Joey Chan, Nicholas Wan, Behdad Afzali, Hyun-Jin Cho, Chang-In Choi, Mehdi Emamverdi, Manjot K. Gill, Sun-Hyung Kim, Yijia Li, Yi Liu, Hanley Ong, Justin Rousseau, Irfan Sheikh, Jenny J. Wei, Ziyang Xu, Christopher M. Zallek, Kyungsang Kim, Yifan Peng, Zhiyong Lu, Jimeng Sun,
- Abstract summary: We present LEADS, an AI foundation model for study search, screening, and data extraction from medical literature.
The model is trained on 633,759 instruction data points in LEADSInstruct, curated from 21,335 systematic reviews, 453,625 clinical trial publications, and 27,015 clinical trial registries.
- Score: 27.473923366948032
- License:
- Abstract: Systematic literature review is essential for evidence-based medicine, requiring comprehensive analysis of clinical trial publications. However, the application of artificial intelligence (AI) models for medical literature mining has been limited by insufficient training and evaluation across broad therapeutic areas and diverse tasks. Here, we present LEADS, an AI foundation model for study search, screening, and data extraction from medical literature. The model is trained on 633,759 instruction data points in LEADSInstruct, curated from 21,335 systematic reviews, 453,625 clinical trial publications, and 27,015 clinical trial registries. We showed that LEADS demonstrates consistent improvements over four cutting-edge generic large language models (LLMs) on six tasks. Furthermore, LEADS enhances expert workflows by providing supportive references following expert requests, streamlining processes while maintaining high-quality results. A study with 16 clinicians and medical researchers from 14 different institutions revealed that experts collaborating with LEADS achieved a recall of 0.81 compared to 0.77 experts working alone in study selection, with a time savings of 22.6%. In data extraction tasks, experts using LEADS achieved an accuracy of 0.85 versus 0.80 without using LEADS, alongside a 26.9% time savings. These findings highlight the potential of specialized medical literature foundation models to outperform generic models, delivering significant quality and efficiency benefits when integrated into expert workflows for medical literature mining.
Related papers
- Leveraging Large Language Models for Medical Information Extraction and Query Generation [2.1793134762413433]
This paper introduces a system that integrates large language models (LLMs) into the clinical trial retrieval process.
We evaluate six LLMs for query generation, focusing on open-source and relatively small models that require minimal computational resources.
arXiv Detail & Related papers (2024-10-31T12:01:51Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - Bridging Data Gaps in Healthcare: A Scoping Review of Transfer Learning in Biomedical Data Analysis [10.185052276452867]
Clinical and biomedical research in low-resource settings often faces challenges due to the need for high-quality data with sufficient sample sizes to construct effective models.
These constraints hinder robust model training and prompt researchers to seek methods for leveraging existing knowledge from related studies to support new research efforts.
Transfer learning (TL), a machine learning technique, emerges as a powerful solution by utilizing knowledge from pre-trained models to enhance the performance of new models.
arXiv Detail & Related papers (2024-07-04T23:34:20Z) - SemioLLM: Assessing Large Language Models for Semiological Analysis in Epilepsy Research [45.2233252981348]
Large Language Models have shown promising results in their ability to encode general medical knowledge.
We test the ability of state-of-the-art LLMs to leverage their internal knowledge and reasoning for epilepsy diagnosis.
arXiv Detail & Related papers (2024-07-03T11:02:12Z) - Accelerating Clinical Evidence Synthesis with Large Language Models [28.002870749019035]
We introduce TrialMind, a generative artificial intelligence pipeline for facilitating human-AI collaboration.
TrialMind excels across study search, screening, and data extraction tasks.
Human experts favored TrialMind's outputs over GPT-4's in 62.5% to 100% of cases.
arXiv Detail & Related papers (2024-06-25T17:41:52Z) - Are Large Language Models True Healthcare Jacks-of-All-Trades? Benchmarking Across Health Professions Beyond Physician Exams [32.77551245372691]
Existing benchmarks for evaluating Large Language Models (LLMs) in healthcare predominantly focus on medical doctors.
We introduce the Examinations for Medical Personnel in Chinese (EMPEC), a pioneering large-scale healthcare knowledge benchmark in traditional Chinese.
EMPEC consists of 157,803 exam questions across 124 subjects and 20 healthcare professions, including underrepresented occupations like Optometrists and Audiologists.
arXiv Detail & Related papers (2024-06-17T08:40:36Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case
Study in Medicine [89.46836590149883]
We build on a prior study of GPT-4's capabilities on medical challenge benchmarks in the absence of special training.
We find that prompting innovation can unlock deeper specialist capabilities and show that GPT-4 easily tops prior leading results for medical benchmarks.
With Medprompt, GPT-4 achieves state-of-the-art results on all nine of the benchmark datasets in the MultiMedQA suite.
arXiv Detail & Related papers (2023-11-28T03:16:12Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
We launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution.
Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK.
arXiv Detail & Related papers (2021-11-18T00:43:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.