Unveiling Discrete Clues: Superior Healthcare Predictions for Rare Diseases
- URL: http://arxiv.org/abs/2501.16373v1
- Date: Thu, 23 Jan 2025 03:08:22 GMT
- Title: Unveiling Discrete Clues: Superior Healthcare Predictions for Rare Diseases
- Authors: Chuang Zhao, Hui Tang, Jiheng Zhang, Xiaomeng Li,
- Abstract summary: UDC is a novel method that unveils discrete clues to bridge consistent textual knowledge and CO signals.
We develop an advanced contrastive approach in the decoding stage, leveraging synthetic and mixed-domain targets.
This approach facilitates bidirectional supervision between textual knowledge and CO signals.
- Score: 15.711501507899072
- License:
- Abstract: Accurate healthcare prediction is essential for improving patient outcomes. Existing work primarily leverages advanced frameworks like attention or graph networks to capture the intricate collaborative (CO) signals in electronic health records. However, prediction for rare diseases remains challenging due to limited co-occurrence and inadequately tailored approaches. To address this issue, this paper proposes UDC, a novel method that unveils discrete clues to bridge consistent textual knowledge and CO signals within a unified semantic space, thereby enriching the representation semantics of rare diseases. Specifically, we focus on addressing two key sub-problems: (1) acquiring distinguishable discrete encodings for precise disease representation and (2) achieving semantic alignment between textual knowledge and the CO signals at the code level. For the first sub-problem, we refine the standard vector quantized process to include condition awareness. Additionally, we develop an advanced contrastive approach in the decoding stage, leveraging synthetic and mixed-domain targets as hard negatives to enrich the perceptibility of the reconstructed representation for downstream tasks. For the second sub-problem, we introduce a novel codebook update strategy using co-teacher distillation. This approach facilitates bidirectional supervision between textual knowledge and CO signals, thereby aligning semantically equivalent information in a shared discrete latent space. Extensive experiments on three datasets demonstrate our superiority.
Related papers
- Discrepancy Matters: Learning from Inconsistent Decoder Features for
Consistent Semi-supervised Medical Image Segmentation [16.136085351887814]
We propose a novel semi-supervised learning method called LeFeD.
LeFeD learns the feature-level discrepancy obtained from decoders by feeding the discrepancy as a feedback signal to the encoder.
LeFeD surpasses competitors without any bells and whistles such as uncertainty estimation and strong constraints.
arXiv Detail & Related papers (2023-09-26T10:33:20Z) - Taxonomy Adaptive Cross-Domain Adaptation in Medical Imaging via
Optimization Trajectory Distillation [73.83178465971552]
The success of automated medical image analysis depends on large-scale and expert-annotated training sets.
Unsupervised domain adaptation (UDA) has been raised as a promising approach to alleviate the burden of labeled data collection.
We propose optimization trajectory distillation, a unified approach to address the two technical challenges from a new perspective.
arXiv Detail & Related papers (2023-07-27T08:58:05Z) - Class Attention to Regions of Lesion for Imbalanced Medical Image
Recognition [59.28732531600606]
We propose a framework named textbfClass textbfAttention to textbfREgions of the lesion (CARE) to handle data imbalance issues.
The CARE framework needs bounding boxes to represent the lesion regions of rare diseases.
Results show that the CARE variants with automated bounding box generation are comparable to the original CARE framework.
arXiv Detail & Related papers (2023-07-19T15:19:02Z) - S$^2$ME: Spatial-Spectral Mutual Teaching and Ensemble Learning for
Scribble-supervised Polyp Segmentation [21.208071679259604]
We develop a framework of spatial-Spectral Dual-branch Mutual Teaching and Entropy-guided Pseudo Label Ensemble Learning.
We produce reliable mixed pseudo labels, which enhance the effectiveness of ensemble learning.
Our strategy efficiently mitigates the deleterious effects of uncertainty and noise present in pseudo labels.
arXiv Detail & Related papers (2023-06-01T08:47:58Z) - HieNet: Bidirectional Hierarchy Framework for Automated ICD Coding [2.9373912230684573]
International Classification of Diseases (ICD) is a set of classification codes for medical records.
In this work, we proposed a novel Bidirectional Hierarchy Framework(HieNet) to address the challenges.
Specifically, a personalized PageRank routine is developed to capture the co-relation of codes, a bidirectional hierarchy passage encoder to capture the codes' hierarchical representations, and a progressive predicting method is then proposed to narrow down the semantic searching space of prediction.
arXiv Detail & Related papers (2022-12-09T14:51:12Z) - Toward Robust Diagnosis: A Contour Attention Preserving Adversarial
Defense for COVID-19 Detection [10.953610196636784]
We propose a Contour Attention Preserving (CAP) method based on lung cavity edge extraction.
Experimental results indicate that the proposed method achieves state-of-the-art performance in multiple adversarial defense and generalization tasks.
arXiv Detail & Related papers (2022-11-30T08:01:23Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Federated Semi-supervised Medical Image Classification via Inter-client
Relation Matching [58.26619456972598]
Federated learning (FL) has emerged with increasing popularity to collaborate distributed medical institutions for training deep networks.
This paper studies a practical yet challenging FL problem, named textitFederated Semi-supervised Learning (FSSL)
We present a novel approach for this problem, which improves over traditional consistency regularization mechanism with a new inter-client relation matching scheme.
arXiv Detail & Related papers (2021-06-16T07:58:00Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - COIN: Contrastive Identifier Network for Breast Mass Diagnosis in
Mammography [16.603205672169608]
Computer-aided breast cancer diagnosis in mammography is a challenging problem, stemming from mammographical data scarcity and data entanglement.
We propose a deep learning framework, named Contrastive Identifier Network (textscCOIN), which integrates adversarial augmentation and manifold-based contrastive learning.
COIN outperforms the state-of-the-art related algorithms for solving breast cancer diagnosis problem by a considerable margin, achieving 93.4% accuracy and 95.0% AUC score.
arXiv Detail & Related papers (2020-12-29T10:02:02Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
We seek to exploit rich labeled data from relevant domains to help the learning in the target task via Unsupervised Domain Adaptation (UDA)
Unlike most UDA methods that rely on clean labeled data or assume samples are equally transferable, we innovatively propose a Collaborative Unsupervised Domain Adaptation algorithm.
We theoretically analyze the generalization performance of the proposed method, and also empirically evaluate it on both medical and general images.
arXiv Detail & Related papers (2020-07-05T11:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.