S$^2$ME: Spatial-Spectral Mutual Teaching and Ensemble Learning for
Scribble-supervised Polyp Segmentation
- URL: http://arxiv.org/abs/2306.00451v1
- Date: Thu, 1 Jun 2023 08:47:58 GMT
- Title: S$^2$ME: Spatial-Spectral Mutual Teaching and Ensemble Learning for
Scribble-supervised Polyp Segmentation
- Authors: An Wang, Mengya Xu, Yang Zhang, Mobarakol Islam, Hongliang Ren
- Abstract summary: We develop a framework of spatial-Spectral Dual-branch Mutual Teaching and Entropy-guided Pseudo Label Ensemble Learning.
We produce reliable mixed pseudo labels, which enhance the effectiveness of ensemble learning.
Our strategy efficiently mitigates the deleterious effects of uncertainty and noise present in pseudo labels.
- Score: 21.208071679259604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fully-supervised polyp segmentation has accomplished significant triumphs
over the years in advancing the early diagnosis of colorectal cancer. However,
label-efficient solutions from weak supervision like scribbles are rarely
explored yet primarily meaningful and demanding in medical practice due to the
expensiveness and scarcity of densely-annotated polyp data. Besides, various
deployment issues, including data shifts and corruption, put forward further
requests for model generalization and robustness. To address these concerns, we
design a framework of Spatial-Spectral Dual-branch Mutual Teaching and
Entropy-guided Pseudo Label Ensemble Learning (S$^2$ME). Concretely, for the
first time in weakly-supervised medical image segmentation, we promote the
dual-branch co-teaching framework by leveraging the intrinsic complementarity
of features extracted from the spatial and spectral domains and encouraging
cross-space consistency through collaborative optimization. Furthermore, to
produce reliable mixed pseudo labels, which enhance the effectiveness of
ensemble learning, we introduce a novel adaptive pixel-wise fusion technique
based on the entropy guidance from the spatial and spectral branches. Our
strategy efficiently mitigates the deleterious effects of uncertainty and noise
present in pseudo labels and surpasses previous alternatives in terms of
efficacy. Ultimately, we formulate a holistic optimization objective to learn
from the hybrid supervision of scribbles and pseudo labels. Extensive
experiments and evaluation on four public datasets demonstrate the superiority
of our method regarding in-distribution accuracy, out-of-distribution
generalization, and robustness, highlighting its promising clinical
significance. Our code is available at https://github.com/lofrienger/S2ME.
Related papers
- Ultrasound Nodule Segmentation Using Asymmetric Learning with Simple Clinical Annotation [25.459627476201646]
We suggest using simple aspect ratio annotations directly from ultrasound clinical diagnoses for automated nodule segmentation.
An asymmetric learning framework is developed by extending the aspect ratio annotations with two types of pseudo labels.
Experiments on two clinically collected ultrasound datasets (thyroid and breast) demonstrate the superior performance of our proposed method.
arXiv Detail & Related papers (2024-04-23T09:07:04Z) - Semi- and Weakly-Supervised Learning for Mammogram Mass Segmentation with Limited Annotations [49.33388736227072]
We propose a semi- and weakly-supervised learning framework for mass segmentation.
We use limited strongly-labeled samples and sufficient weakly-labeled samples to achieve satisfactory performance.
Experiments on CBIS-DDSM and INbreast datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-03-14T12:05:25Z) - FedLPPA: Learning Personalized Prompt and Aggregation for Federated Weakly-supervised Medical Image Segmentation [1.6013679829631893]
Federated learning (FL) effectively mitigates the data silo challenge brought about by policies and privacy concerns.
Traditional centralized FL models grapple with diverse multi-center data, notably in medical contexts.
We propose a novel personalized FL framework with learnable prompt and aggregation (FedLPPA) to uniformly leverage heterogeneous weak supervision for medical image segmentation.
arXiv Detail & Related papers (2024-02-27T13:41:32Z) - Harmonized Spatial and Spectral Learning for Robust and Generalized Medical Image Segmentation [5.3590650005818254]
We introduce the innovative Spectral Correlation Coefficient objective to improve the model's capacity to capture middle-order features and contextual long-range dependencies.
Experiments reveal that optimizing this objective with existing architectures like UNet and TransUNet significantly enhances generalization, interpretability, and noise robustness.
arXiv Detail & Related papers (2024-01-18T20:43:43Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Taxonomy Adaptive Cross-Domain Adaptation in Medical Imaging via
Optimization Trajectory Distillation [73.83178465971552]
The success of automated medical image analysis depends on large-scale and expert-annotated training sets.
Unsupervised domain adaptation (UDA) has been raised as a promising approach to alleviate the burden of labeled data collection.
We propose optimization trajectory distillation, a unified approach to address the two technical challenges from a new perspective.
arXiv Detail & Related papers (2023-07-27T08:58:05Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
We propose a novel semi-supervised segmentation method named Rectified Contrastive Pseudo Supervision (RCPS)
RCPS combines a rectified pseudo supervision and voxel-level contrastive learning to improve the effectiveness of semi-supervised segmentation.
Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art methods in semi-supervised medical image segmentation.
arXiv Detail & Related papers (2023-01-13T12:03:58Z) - Voxel-wise Adversarial Semi-supervised Learning for Medical Image
Segmentation [4.489713477369384]
We introduce a novel adversarial learning-based semi-supervised segmentation method for medical image segmentation.
Our method embeds both local and global features from multiple hidden layers and learns context relations between multiple classes.
Our method outperforms current best-performing state-of-the-art semi-supervised learning approaches on the image segmentation of the left atrium (single class) and multiorgan datasets (multiclass)
arXiv Detail & Related papers (2022-05-14T06:57:19Z) - Every Annotation Counts: Multi-label Deep Supervision for Medical Image
Segmentation [85.0078917060652]
We propose a semi-weakly supervised segmentation algorithm to overcome this barrier.
Our approach is based on a new formulation of deep supervision and student-teacher model.
With our novel training regime for segmentation that flexibly makes use of images that are either fully labeled, marked with bounding boxes, just global labels, or not at all, we are able to cut the requirement for expensive labels by 94.22%.
arXiv Detail & Related papers (2021-04-27T14:51:19Z) - Deep Semi-supervised Metric Learning with Dual Alignment for Cervical
Cancer Cell Detection [49.78612417406883]
We propose a novel semi-supervised deep metric learning method for cervical cancer cell detection.
Our model learns an embedding metric space and conducts dual alignment of semantic features on both the proposal and prototype levels.
We construct a large-scale dataset for semi-supervised cervical cancer cell detection for the first time, consisting of 240,860 cervical cell images.
arXiv Detail & Related papers (2021-04-07T17:11:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.