FBQuant: FeedBack Quantization for Large Language Models
- URL: http://arxiv.org/abs/2501.16385v1
- Date: Sat, 25 Jan 2025 06:04:07 GMT
- Title: FBQuant: FeedBack Quantization for Large Language Models
- Authors: Yijiang Liu, Hengyu Fang, Liulu He, Rongyu Zhang, Yichuan Bai, Yuan Du, Li Du,
- Abstract summary: We propose FeedBack Quantization (FBQuant), a novel approach inspired by negative feedback mechanisms in automatic control.
FBQuant inherently ensures that the reconstructed weights remain bounded by quantization, thereby reducing the risk of overfitting.
For 3-bit Llama2-7B, FBQuant improves zero-shot accuracy by 1.2%.
- Score: 13.545647487024864
- License:
- Abstract: Deploying Large Language Models (LLMs) on edge devices is increasingly important, as it eliminates reliance on network connections, reduces expensive API calls, and enhances user privacy. However, on-device deployment is challenging due to the limited computational resources of edge devices. In particular, the key bottleneck stems from memory bandwidth constraints related to weight loading. Weight-only quantization effectively reduces memory access, yet often induces significant accuracy degradation. Recent efforts to incorporate sub-branches have shown promise for mitigating quantization errors, but these methods either lack robust optimization strategies or rely on suboptimal objectives. To address these gaps, we propose FeedBack Quantization (FBQuant), a novel approach inspired by negative feedback mechanisms in automatic control. FBQuant inherently ensures that the reconstructed weights remain bounded by the quantization process, thereby reducing the risk of overfitting. To further offset the additional latency introduced by sub-branches, we develop an efficient CUDA kernel that decreases 60\% of extra inference time. Comprehensive experiments demonstrate the efficiency and effectiveness of FBQuant across various LLMs. Notably, for 3-bit Llama2-7B, FBQuant improves zero-shot accuracy by 1.2\%.
Related papers
- Column-wise Quantization of Weights and Partial Sums for Accurate and Efficient Compute-In-Memory Accelerators [7.728820930581886]
CIM is an efficient method for implementing deep neural networks (DNNs)
CIM suffers from substantial overhead from analog-to-digital converters (ADCs)
Low-bit weight constraints, im- posed by cell limitations and the need for multiple cells present further challenges.
This work addresses these challenges by aligning weight and partial-sum quantization granularities at the column-wise level.
arXiv Detail & Related papers (2025-02-11T05:32:14Z) - Accurate Block Quantization in LLMs with Outliers [0.6138671548064355]
The demand for inference on extremely large scale LLMs has seen enormous growth in recent months.
The problem is aggravated by the exploding raise in the lengths of the sequences being processed.
Various quantization techniques have been proposed that allow accurate quantization for both weights and activations.
arXiv Detail & Related papers (2024-03-29T12:15:06Z) - WKVQuant: Quantizing Weight and Key/Value Cache for Large Language
Models Gains More [55.0856305773081]
Large Language Models (LLMs) face significant deployment challenges due to their substantial memory requirements and the computational demands of auto-regressive text generation process.
This paper addresses these challenges by focusing on the quantization of LLMs, a technique that reduces memory consumption by converting model parameters and activations into low-bit integers.
arXiv Detail & Related papers (2024-02-19T11:33:21Z) - Post-Training Quantization for Re-parameterization via Coarse & Fine
Weight Splitting [13.270381125055275]
We propose a coarse & fine weight splitting (CFWS) method to reduce quantization error of weight.
We develop an improved KL metric to determine optimal quantization scales for activation.
For example, the quantized RepVGG-A1 model exhibits a mere 0.3% accuracy loss.
arXiv Detail & Related papers (2023-12-17T02:31:20Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
Large language models (LLMs) have revolutionized natural language processing tasks.
Recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM.
We introduce an Omnidirectionally calibrated Quantization technique for LLMs, which achieves good performance in diverse quantization settings.
arXiv Detail & Related papers (2023-08-25T02:28:35Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient Inference in Large-Scale Generative Language Models [9.727062803700264]
We introduce LUT-GEMM, an efficient kernel for quantized matrix multiplication.
LUT-GEMM eliminates the resource-intensive dequantization process and reduces computational costs.
We show experimentally that when applied to the OPT-175B model with 3-bit quantization, LUT-GEMM substantially accelerates token generation latency.
arXiv Detail & Related papers (2022-06-20T03:48:17Z) - AMED: Automatic Mixed-Precision Quantization for Edge Devices [3.5223695602582614]
Quantized neural networks are well known for reducing the latency, power consumption, and model size without significant harm to the performance.
Mixed-precision quantization offers better utilization of customized hardware that supports arithmetic operations at different bitwidths.
arXiv Detail & Related papers (2022-05-30T21:23:22Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
We propose a Fully Quantized image Super-Resolution framework (FQSR) to jointly optimize efficiency and accuracy.
We apply our quantization scheme on multiple mainstream super-resolution architectures, including SRResNet, SRGAN and EDSR.
Our FQSR using low bits quantization can achieve on par performance compared with the full-precision counterparts on five benchmark datasets.
arXiv Detail & Related papers (2020-11-29T03:53:49Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.