論文の概要: Inductive-Associative Meta-learning Pipeline with Human Cognitive Patterns for Unseen Drug-Target Interaction Prediction
- arxiv url: http://arxiv.org/abs/2501.16391v2
- Date: Thu, 27 Mar 2025 07:41:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:49:42.449522
- Title: Inductive-Associative Meta-learning Pipeline with Human Cognitive Patterns for Unseen Drug-Target Interaction Prediction
- Title(参考訳): 薬物・標的相互作用予測のための人間の認知パターンを用いた誘導的・連想的メタラーニングパイプライン
- Authors: Xiaoqing Lian, Jie Zhu, Tianxu Lv, Shiyun Nie, Hang Fan, Guosheng Wu, Yunjun Ge, Lihua Li, Xiangxiang Zeng, Xiang Pan,
- Abstract要約: BioBridgeは、限られたシーケンスデータを用いて、新規なドラッグとターゲットの相互作用を予測する。
変換可能なバインディング原理を蓄積するために、逆行訓練を備えたマルチレベルエンコーダが組み込まれている。
これは、上皮成長因子受容体とアデノシン受容体の仮想スクリーニングに有効であることが証明され、薬物発見におけるその可能性を裏付けている。
- 参考スコア(独自算出の注目度): 13.23471591766483
- License:
- Abstract: Significant differences in protein structures hinder the generalization of existing drug-target interaction (DTI) models, which often rely heavily on pre-learned binding principles or detailed annotations. In contrast, BioBridge designs an Inductive-Associative pipeline inspired by the workflow of scientists who base their accumulated expertise on drawing insights into novel drug-target pairs from weakly related references. BioBridge predicts novel drug-target interactions using limited sequence data, incorporating multi-level encoders with adversarial training to accumulate transferable binding principles. On these principles basis, BioBridge employs a dynamic prototype meta-learning framework to associate insights from weakly related annotations, enabling robust predictions for previously unseen drug-target pairs. Extensive experiments demonstrate that BioBridge surpasses existing models, especially for unseen proteins. Notably, when only homologous protein binding data is available, BioBridge proves effective for virtual screening of the epidermal growth factor receptor and adenosine receptor, underscoring its potential in drug discovery.
- Abstract(参考訳): タンパク質構造における重要な違いは、既存のドラッグターゲット相互作用(DTI)モデルの一般化を妨げる。
対照的に、BioBridgeは、科学者のワークフローにインスパイアされたインダクティブ・アソシエイト・パイプラインを設計している。
BioBridgeは、制限されたシーケンスデータを使用して新規なドラッグ・ターゲット相互作用を予測し、多レベルエンコーダと逆行訓練を組み込んで、転送可能な結合原理を蓄積する。
これらの原則に基づいて、BioBridgeは、弱い関連アノテーションからの洞察を関連付けるために、動的なプロトタイプのメタラーニングフレームワークを使用している。
大規模な実験では、BioBridgeが既存のモデル、特に目に見えないタンパク質を超越していることが示されている。
特に、相同性タンパク質結合データのみが利用可能である場合、BioBridgeは上皮成長因子受容体とアデノシン受容体の仮想スクリーニングに有効であることが証明され、薬物発見におけるその可能性を裏付ける。
関連論文リスト
- MIN: Multi-channel Interaction Network for Drug-Target Interaction with Protein Distillation [64.4838301776267]
マルチチャネルインタラクションネットワーク(MIN)はドラッグ・ターゲット・インタラクション(DTI)を予測するための新しいフレームワークである
MINには、表現学習モジュールとマルチチャネルインタラクションモジュールが組み込まれている。
MINはDTI予測の強力なツールであるだけでなく、タンパク質結合部位の予測に関する新たな洞察も提供する。
論文 参考訳(メタデータ) (2024-11-23T05:38:36Z) - Improving Biomedical Entity Linking with Retrieval-enhanced Learning [53.24726622142558]
$k$NN-BioELは、トレーニングコーパス全体から同様のインスタンスを予測のヒントとして参照する機能を備えたBioELモデルを提供する。
k$NN-BioELは、いくつかのデータセットで最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2023-12-15T14:04:23Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
分子間相互作用予測のためのバイオKDN (Biomedical Knowledge Graph Denoising Network) を提案する。
BioKDNは、ノイズの多いリンクを学習可能な方法で識別することで、局所的な部分グラフの信頼性の高い構造を洗練する。
ターゲットの相互作用に関する関係を円滑にすることで、一貫性とロバストなセマンティクスを維持する。
論文 参考訳(メタデータ) (2023-12-09T07:08:00Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
薬物発見の鍵となる側面は、新規な薬物標的相互作用(DT)の同定である。
タンパク質-リガンド相互作用は結合親和性として知られる結合強度の連続性を示す。
性能向上のための新しい改良を提案する。
論文 参考訳(メタデータ) (2023-10-06T05:00:25Z) - Embracing assay heterogeneity with neural processes for markedly
improved bioactivity predictions [0.276240219662896]
リガンドの生物活性を予測することは、コンピュータ支援薬物発見において最も困難かつ最も重要な課題の1つである。
長年のデータ収集とキュレーションの努力にもかかわらず、生物活性データは希少で不均一である。
異種アッセイ間の情報シナジーを利用した階層型メタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-17T16:26:58Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - AI-Bind: Improving Binding Predictions for Novel Protein Targets and
Ligands [9.135203550164833]
現状のモデルは、新しい構造への一般化に失敗することを示す。
ネットワークベースのサンプリング戦略と教師なし事前トレーニングを組み合わせたパイプラインであるAI-Bindを紹介する。
我々は,SARS-CoV-2ウイルスタンパク質に結合した薬剤や天然化合物を予測し,AI-Bindの価値を説明する。
論文 参考訳(メタデータ) (2021-12-25T01:52:58Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
本稿では,3方向トランスフォーマーアーキテクチャを用いて分子間情報をモデル化する手法を提案する。
分子間グラフ変換器(IGT)は、それぞれ、結合活性と結合ポーズ予測の2番目のベストに対して、最先端のアプローチを9.1%と20.5%で上回っている。
IGTはSARS-CoV-2に対して有望な薬物スクリーニング能力を示す。
論文 参考訳(メタデータ) (2021-10-14T13:28:02Z) - Machine learning modeling of family wide enzyme-substrate specificity
screens [2.276367922551686]
バイオ触媒は、医薬品、複雑な天然物、商品化学物質を大規模に合成するための有望なアプローチである。
生体触媒の導入は、非天然基質上での化学的変換を触媒する酵素の選択能力によって制限される。
論文 参考訳(メタデータ) (2021-09-08T19:44:42Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
Deep Relationsは物理にインスパイアされた、本質的に説明可能なアーキテクチャを持つディープリレーショナルネットワークである。
それは最先端技術に対する優れた解釈可能性を示している。
接触予測 9.5, 16.9, 19.3, 5.7 倍の AUPRC をテスト用、複合ユニク、タンパク質ユニク、両ユニクセットで強化する。
論文 参考訳(メタデータ) (2019-12-29T00:14:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。