Transformer^-1: Input-Adaptive Computation for Resource-Constrained Deployment
- URL: http://arxiv.org/abs/2501.16394v1
- Date: Sun, 26 Jan 2025 15:31:45 GMT
- Title: Transformer^-1: Input-Adaptive Computation for Resource-Constrained Deployment
- Authors: Lumen AI, Tengzhou No. 1 Middle School, Shihao Ji, Zihui Song, Fucheng Zhong, Jisen Jia, Zhaobo Wu, Zheyi Cao, Xu Tianhao,
- Abstract summary: This paper proposes a Transformer$-1$ architecture to address the resource waste caused by fixed computation paradigms in deep learning models under dynamic scenarios.
In a benchmark test, our method reduces FLOPs by 42.7% and peak memory usage by 3% compared to the standard Transformer.
We also conducted experiments on several natural language processing tasks and achieved significant improvements in resource efficiency.
- Score: 3.6219999155937113
- License:
- Abstract: Addressing the resource waste caused by fixed computation paradigms in deep learning models under dynamic scenarios, this paper proposes a Transformer$^{-1}$ architecture based on the principle of deep adaptivity. This architecture achieves dynamic matching between input features and computational resources by establishing a joint optimization model for complexity and computation. Our core contributions include: (1) designing a two-layer control mechanism, composed of a complexity predictor and a reinforcement learning policy network, enabling end-to-end optimization of computation paths; (2) deriving a lower bound theory for dynamic computation, proving the system's theoretical reach to optimal efficiency; and (3) proposing a layer folding technique and a CUDA Graph pre-compilation scheme, overcoming the engineering bottlenecks of dynamic architectures. In the ImageNet-1K benchmark test, our method reduces FLOPs by 42.7\% and peak memory usage by 34.1\% compared to the standard Transformer, while maintaining comparable accuracy ($\pm$0.3\%). Furthermore, we conducted practical deployment on the Jetson AGX Xavier platform, verifying the effectiveness and practical value of this method in resource-constrained environments. To further validate the generality of the method, we also conducted experiments on several natural language processing tasks and achieved significant improvements in resource efficiency.
Related papers
- Adaptive Error-Bounded Hierarchical Matrices for Efficient Neural Network Compression [0.0]
This paper introduces a dynamic, error-bounded hierarchical matrix (H-matrix) compression method tailored for Physics-Informed Neural Networks (PINNs)
The proposed approach reduces the computational complexity and memory demands of large-scale physics-based models while preserving the essential properties of the Neural Tangent Kernel (NTK)
Empirical results demonstrate that this technique outperforms traditional compression methods, such as Singular Value Decomposition (SVD), pruning, and quantization, by maintaining high accuracy and improving generalization capabilities.
arXiv Detail & Related papers (2024-09-11T05:55:51Z) - Efficiency optimization of large-scale language models based on deep learning in natural language processing tasks [6.596361762662328]
Internal structure and operation mechanism of large-scale language models are analyzed theoretically.
We evaluate the contribution of adaptive optimization algorithms (such as AdamW), massively parallel computing techniques, and mixed precision training strategies.
arXiv Detail & Related papers (2024-05-20T00:10:00Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
We identify and test new hybrid architectures constructed from a variety of computational primitives.
We experimentally validate the resulting architectures via an extensive compute-optimal and a new state-optimal scaling law analysis.
We find MAD synthetics to correlate with compute-optimal perplexity, enabling accurate evaluation of new architectures.
arXiv Detail & Related papers (2024-03-26T16:33:12Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
We introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR)
CFSR inherits the advantages of both convolution-based and transformer-based approaches.
Experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance.
arXiv Detail & Related papers (2024-01-11T03:08:00Z) - Efficient Inverse Design Optimization through Multi-fidelity Simulations, Machine Learning, and Search Space Reduction Strategies [0.8646443773218541]
This paper introduces a methodology designed to augment the inverse design optimization process in scenarios constrained by limited compute.
The proposed methodology is analyzed on two distinct engineering inverse design problems: airfoil inverse design and the scalar field reconstruction problem.
Notably, this method is adaptable across any inverse design application, facilitating a synergy between a representative low-fidelity ML model, and high-fidelity simulation, and can be seamlessly applied across any variety of population-based optimization algorithms.
arXiv Detail & Related papers (2023-12-06T18:20:46Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
Transformer models achieve superior accuracy across a wide range of applications.
The amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate.
There has been an increased focus on making Transformer models more efficient.
arXiv Detail & Related papers (2023-02-27T18:18:13Z) - Improvement of Computational Performance of Evolutionary AutoML in a
Heterogeneous Environment [0.0]
We propose a modular approach to increase the quality of evolutionary optimization for modelling pipelines with a graph-based structure.
The implemented algorithms are available as a part of the open-source framework FEDOT.
arXiv Detail & Related papers (2023-01-12T15:59:04Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Scalable Second Order Optimization for Deep Learning [34.12384996822749]
We present a scalable implementation of a second-order preconditioned method (concretely, a variant of full-matrix Adagrad)
Our novel design effectively utilizes the prevalent heterogeneous hardware architecture for training deep models, consisting of a multicore CPU coupled with multiple accelerator units.
We demonstrate superior performance compared to state-of-the-art on very large learning tasks such as machine translation with Transformers, language modeling with BERT, click-through rate prediction on Criteo, and image classification on ImageNet with ResNet-50.
arXiv Detail & Related papers (2020-02-20T20:51:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.