論文の概要: On the Feasibility of Using LLMs to Execute Multistage Network Attacks
- arxiv url: http://arxiv.org/abs/2501.16466v1
- Date: Mon, 27 Jan 2025 19:58:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:41:55.069140
- Title: On the Feasibility of Using LLMs to Execute Multistage Network Attacks
- Title(参考訳): LLMを用いたマルチステージネットワーク攻撃の可能性について
- Authors: Brian Singer, Keane Lucas, Lakshmi Adiga, Meghna Jain, Lujo Bauer, Vyas Sekar,
- Abstract要約: マルチステージネットワーク攻撃は、複数のホストにまたがる多様なアクションの実行を含む。
LLM非依存の高レベルアタック抽象化層であるIncalmoを導入する。
Incalmoは10の現実的なエミュレートネットワークのうち9つでマルチステージ攻撃をうまく実行可能であることを示す。
- 参考スコア(独自算出の注目度): 11.723107599968717
- License:
- Abstract: LLMs have shown preliminary promise in some security tasks and CTF challenges. However, it is unclear whether LLMs are able to realize multistage network attacks, which involve executing a wide variety of actions across multiple hosts such as conducting reconnaissance, exploiting vulnerabilities to gain initial access, leveraging internal hosts to move laterally, and using multiple compromised hosts to exfiltrate data. We evaluate LLMs across 10 multistage networks and find that popular LLMs are unable to realize these attacks. To enable LLMs to realize these attacks, we introduce Incalmo, an LLM-agnostic high-level attack abstraction layer that sits between an LLM and the environment. Rather than LLMs issuing low-level command-line instructions, which can lead to incorrect implementations, Incalmo allows LLMs to specify high-level tasks (e.g., infect a host, scan a network), which are then carried out by Incalmo. Incalmo realizes these tasks by translating them into low-level primitives (e.g., commands to exploit tools). Incalmo also provides an environment state service and an attack graph service to provide structure to LLMs in selecting actions relevant to a multistage attack. Across 9 out of 10 realistic emulated networks (from 25 to 50 hosts), LLMs using Incalmo can successfully autonomously execute multistage attacks. We also conduct an ablation analysis to show the key role the high-level abstractions play. For instance, we find that both Incalmo's high-level tasks and services are crucial. Furthermore, even smaller-parameter LLMs with Incalmo can fully succeed in 5 of 10 environments, while larger-parameter LLMs without Incalmo do not fully succeed in any.
- Abstract(参考訳): LLMはいくつかのセキュリティタスクとCTFの課題で予備的な約束を示している。
しかし、LLMがマルチステージネットワーク攻撃を実現できるかどうかは不明で、偵察の実行、初期アクセスのための脆弱性の悪用、内部ホストの利用による横移動、複数の妥協されたホストによるデータの流出など、複数のホスト間で多様なアクションを実行することができる。
我々は10のマルチステージネットワーク上でのLSMの評価を行い、人気のあるLSMがこれらの攻撃を実現することができないことを発見した。
LLMがこれらの攻撃を実現するために,LLMと環境の間に位置するLLMに依存しない高レベル攻撃抽象化層であるIncalmoを導入する。
低レベルのコマンドライン命令を発行する代わりに、インカルモは低レベルのタスク(例えばホストに感染し、ネットワークをスキャンする)を指定し、インカルモが実行する。
Incalmoはこれらのタスクを低レベルのプリミティブ(例えばツールを活用するコマンド)に変換することで実現している。
Incalmoはまた、環境状態サービスとアタックグラフサービスを提供し、マルチステージアタックに関連するアクションを選択するためのLLMの構造を提供する。
10の現実的なエミュレートネットワーク(25から50のホスト)のうち9つで、Incalmoを使用したLLMは、マルチステージ攻撃を自律的に実行することができる。
また、高レベルの抽象化が果たす重要な役割を示すアブレーション分析も行います。
例えば、Incalmoのハイレベルなタスクとサービスの両方が重要です。
さらに、Incalmoを持つ小型のLLMでも10の環境のうち5つの環境で完全に成功できるが、Incalmoを持たない大型のLLMでは成功しない。
関連論文リスト
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - Intermittent Semi-working Mask: A New Masking Paradigm for LLMs [13.271151693864114]
マルチターン対話は人間と大規模言語モデル(LLM)の鍵となる対話手法である
これらの問題に対処するために,ISM (Intermittent Semi-working Mask) と呼ばれる新しいマスキング手法を提案する。
論文 参考訳(メタデータ) (2024-08-01T13:22:01Z) - Human-Interpretable Adversarial Prompt Attack on Large Language Models with Situational Context [49.13497493053742]
本研究は,無意味な接尾辞攻撃を状況駆動型文脈書き換えによって意味のあるプロンプトに変換することを検討する。
我々は、独立して意味のある敵の挿入と映画から派生した状況を組み合わせて、LLMを騙せるかどうかを確認します。
当社のアプローチでは,オープンソースとプロプライエタリなLLMの両方で,状況駆動型攻撃を成功させることが実証されている。
論文 参考訳(メタデータ) (2024-07-19T19:47:26Z) - MaPPing Your Model: Assessing the Impact of Adversarial Attacks on LLM-based Programming Assistants [14.947665219536708]
本稿では,攻撃者がプログラムタスクのプロンプトに少量のテキストを付加するMalicious Programming Prompt(MaPP)攻撃を紹介する。
我々の迅速な戦略は、LSMが他の方法で正しいコードを書き続けながら脆弱性を追加する可能性があることを示しています。
論文 参考訳(メタデータ) (2024-07-12T22:30:35Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Chain-of-Scrutiny: Detecting Backdoor Attacks for Large Language Models [35.77228114378362]
大規模言語モデル(LLM)は、攻撃者が設定した特定の「トリガー」を含む入力が悪意ある出力を生成する。
従来の防衛戦略は、モデルアクセスの制限、高い計算コスト、データ要求のため、APIアクセス可能なLLMでは実用的ではない。
バックドア攻撃を緩和するために,LLMのユニークな推論能力を活用するChain-of-Scrutiny (CoS)を提案する。
論文 参考訳(メタデータ) (2024-06-10T00:53:25Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - Defending Large Language Models Against Jailbreak Attacks via Layer-specific Editing [14.094372002702476]
大規模言語モデル(LLM)は、広範囲の現実世界のアプリケーションで採用されつつある。
近年の研究では、LSMは故意に構築された敵のプロンプトに弱いことが示されている。
そこで本研究では,新しい防衛手法である textbfLayer-specific textbfEditing (LED) を提案する。
論文 参考訳(メタデータ) (2024-05-28T13:26:12Z) - Prompt Leakage effect and defense strategies for multi-turn LLM interactions [95.33778028192593]
システムプロンプトの漏洩は知的財産を侵害し、攻撃者に対する敵の偵察として機能する可能性がある。
我々は, LLM sycophancy 効果を利用して, 平均攻撃成功率 (ASR) を17.7%から86.2%に高めるユニークな脅威モデルを構築した。
7つのブラックボックス防衛戦略の緩和効果と、漏洩防止のためのオープンソースモデルを微調整する。
論文 参考訳(メタデータ) (2024-04-24T23:39:58Z) - LgTS: Dynamic Task Sampling using LLM-generated sub-goals for
Reinforcement Learning Agents [10.936460061405157]
LgTS (LLM-Guided Teacher-Student Learning) を提案する。
提案手法では,提案したサブゴールを達成するための事前訓練されたポリシーも必要としない。
論文 参考訳(メタデータ) (2023-10-14T00:07:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。