SJTU:Spatial judgments in multimodal models towards unified segmentation through coordinate detection
- URL: http://arxiv.org/abs/2412.02565v2
- Date: Fri, 06 Dec 2024 07:08:56 GMT
- Title: SJTU:Spatial judgments in multimodal models towards unified segmentation through coordinate detection
- Authors: Joongwon Chae, Zhenyu Wang, Peiwu Qin,
- Abstract summary: This paper introduces SJTU: Spatial Judgments in Multimodal Models - Towards Unified through Coordinate Detection.
It presents an approach for integrating segmentation techniques with vision-language models through spatial inference in multimodal space.
We demonstrate superior performance across benchmark datasets, achieving IoU scores of 0.5958 on COCO 2017 and 0.6758 on Pascal VOC.
- Score: 4.930667479611019
- License:
- Abstract: Despite significant advances in vision-language understanding, implementing image segmentation within multimodal architectures remains a fundamental challenge in modern artificial intelligence systems. Existing vision-language models, which primarily rely on backbone architectures or CLIP-based embedding learning, demonstrate inherent limitations in fine-grained spatial localization and operational capabilities. This paper introduces SJTU: Spatial Judgments in Multimodal Models - Towards Unified Segmentation through Coordinate Detection, a framework that leverages spatial coordinate understanding to bridge vision-language interaction and precise segmentation, enabling accurate target identification through natural language instructions. The framework presents an approach for integrating segmentation techniques with vision-language models through spatial inference in multimodal space. By utilizing normalized coordinate detection for bounding boxes and transforming them into actionable segmentation outputs, we establish a connection between spatial and language representations in multimodal architectures. Experimental results demonstrate superior performance across benchmark datasets, achieving IoU scores of 0.5958 on COCO 2017 and 0.6758 on Pascal VOC. Testing on a single NVIDIA RTX 3090 GPU with 512x512 resolution images yields an average inference time of 7 seconds per image, demonstrating the framework's effectiveness in both accuracy and practical deployability. The project code is available at https://github.com/jw-chae/SJTU
Related papers
- Optimized Unet with Attention Mechanism for Multi-Scale Semantic Segmentation [8.443350618722564]
This paper proposes an improved Unet model combined with an attention mechanism.
It introduces channel attention and spatial attention modules, enhances the model's ability to focus on important features.
The improved model performs well in terms of mIoU and pixel accuracy (PA), reaching 76.5% and 95.3% respectively.
arXiv Detail & Related papers (2025-02-06T06:51:23Z) - Multi-Level Embedding and Alignment Network with Consistency and Invariance Learning for Cross-View Geo-Localization [2.733505168507872]
Cross-View Geo-Localization (CVGL) involves determining the localization of drone images by retrieving the most similar GPS-tagged satellite images.
Existing methods often overlook the problem of increased computational and storage requirements when improving model performance.
We propose a lightweight enhanced alignment network, called the Multi-Level Embedding and Alignment Network (MEAN)
arXiv Detail & Related papers (2024-12-19T13:10:38Z) - GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning [51.677086019209554]
We propose a Generalized Structural Sparse to capture powerful relationships across modalities for pair-wise similarity learning.
The distance metric delicately encapsulates two formats of diagonal and block-diagonal terms.
Experiments on cross-modal and two extra uni-modal retrieval tasks have validated its superiority and flexibility.
arXiv Detail & Related papers (2024-10-20T03:45:50Z) - From Unimodal to Multimodal: Scaling up Projectors to Align Modalities [16.733970553781887]
We propose a novel approach that aligns vision and language modalities using only projection layers on pretrained, frozen unimodal encoders.
Our method exploits the high semantic similarity between embedding spaces of well-trained vision and language models.
It involves selecting semantically similar encoders in the latent space, curating a concept-rich dataset of image-caption pairs, and training simple projectors.
arXiv Detail & Related papers (2024-09-28T17:57:32Z) - GLCONet: Learning Multi-source Perception Representation for Camouflaged Object Detection [23.872633359324098]
We propose a novel Global-Local Collaborative Optimization Network, called GLCONet.
In this paper, we first design a collaborative optimization strategy to simultaneously model the local details and global long-range relationships.
Experiments demonstrate that the proposed GLCONet method with different backbones can effectively activate potentially significant pixels in an image.
arXiv Detail & Related papers (2024-09-15T02:26:17Z) - REVISION: Rendering Tools Enable Spatial Fidelity in Vision-Language Models [67.55362046790512]
Vision-language models lack the ability to correctly reason over spatial relationships.
We develop the REVISION framework which improves spatial fidelity in vision-language models.
Our results and findings indicate that utilizing rendering-based frameworks is an effective approach for developing spatially-aware models.
arXiv Detail & Related papers (2024-08-05T04:51:46Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
arXiv Detail & Related papers (2024-05-21T11:59:36Z) - Towards Natural Language-Guided Drones: GeoText-1652 Benchmark with Spatial Relation Matching [60.645802236700035]
Navigating drones through natural language commands remains challenging due to the dearth of accessible multi-modal datasets.
We introduce GeoText-1652, a new natural language-guided geo-localization benchmark.
This dataset is systematically constructed through an interactive human-computer process.
arXiv Detail & Related papers (2023-11-21T17:52:30Z) - All in One: Exploring Unified Vision-Language Tracking with Multi-Modal
Alignment [23.486297020327257]
Current vision-language (VL) tracking framework consists of three parts, ie a visual feature extractor, a language feature extractor, and a fusion model.
We propose an All-in-One framework, which learns joint feature extraction and interaction by adopting a unified transformer backbone.
arXiv Detail & Related papers (2023-07-07T03:51:21Z) - Exploring Intra- and Inter-Video Relation for Surgical Semantic Scene
Segmentation [58.74791043631219]
We propose a novel framework STswinCL that explores the complementary intra- and inter-video relations to boost segmentation performance.
We extensively validate our approach on two public surgical video benchmarks, including EndoVis18 Challenge and CaDIS dataset.
Experimental results demonstrate the promising performance of our method, which consistently exceeds previous state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-29T05:52:23Z) - A Unified Transformer Framework for Group-based Segmentation:
Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection [59.21990697929617]
Humans tend to mine objects by learning from a group of images or several frames of video since we live in a dynamic world.
Previous approaches design different networks on similar tasks separately, and they are difficult to apply to each other.
We introduce a unified framework to tackle these issues, term as UFO (UnifiedObject Framework for Co-Object Framework)
arXiv Detail & Related papers (2022-03-09T13:35:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.