論文の概要: Digital Twin Enabled Site Specific Channel Precoding: Over the Air CIR Inference
- arxiv url: http://arxiv.org/abs/2501.16504v1
- Date: Mon, 27 Jan 2025 21:10:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:40:50.607870
- Title: Digital Twin Enabled Site Specific Channel Precoding: Over the Air CIR Inference
- Title(参考訳): デジタルツインでサイト特定チャネルのプリコーディングが可能に:Air CIRの推論で
- Authors: Majumder Haider, Imtiaz Ahmed, Zoheb Hassan, Timothy J. O'Shea, Lingjia Liu, Danda B. Rawat,
- Abstract要約: 実環境のCSIに非常に近いCSIをレンダリングできる細調整多段チャネルツイン設計法を提案する。
送信側で得られたCSIを用いてプリコーディングを行う。
- 参考スコア(独自算出の注目度): 25.427090541716378
- License:
- Abstract: This paper investigates the significance of designing a reliable, intelligent, and true physical environment-aware precoding scheme by leveraging an accurately designed channel twin model to obtain realistic channel state information (CSI) for cellular communication systems. Specifically, we propose a fine-tuned multi-step channel twin design process that can render CSI very close to the CSI of the actual environment. After generating a precise CSI, we execute precoding using the obtained CSI at the transmitter end. We demonstrate a two-step parameters' tuning approach to design channel twin by ray tracing (RT) emulation, then further fine-tuning of CSI by employing an artificial intelligence (AI) based algorithm can significantly reduce the gap between actual CSI and the fine-tuned digital twin (DT) rendered CSI. The simulation results show the effectiveness of the proposed novel approach in designing a true physical environment-aware channel twin model.
- Abstract(参考訳): 本稿では、正確なチャネル双対モデルを用いて、携帯電話通信システムにおける現実的なチャネル状態情報(CSI)を得ることにより、信頼性が高く、インテリジェントで、真の物理的環境に配慮したプリコーディング方式を設計することの重要性について検討する。
具体的には、実環境のCSIに非常に近いCSIをレンダリングできる、微調整されたマルチステップチャネルツイン設計プロセスを提案する。
正確なCSIを生成した後、送信側で得られたCSIを用いてプリコーディングを実行する。
我々は、レイトレーシング(RT)エミュレーションによる設計チャネルツインへの2段階パラメータのチューニング手法を実証し、人工知能(AI)ベースのアルゴリズムを用いてCSIをさらに微調整することで、実際のCSIとDT(デジタルツイン)レンダリングCSIとのギャップを大幅に減らすことができることを示した。
シミュレーションの結果, 実環境を考慮したチャネル双対モデルの設計において, 提案手法の有効性が示された。
関連論文リスト
- A MIMO Wireless Channel Foundation Model via CIR-CSI Consistency [19.658024410165112]
本稿では,チャネル状態情報(CSI)とチャネルインパルス応答(CIR)を自然に整列したマルチモーダルデータとして扱う。
CIRとCSIの両方の結合表現を効果的にキャプチャすることで、CSI-CLIPはシナリオ間で顕著な適応性を示す。
論文 参考訳(メタデータ) (2025-02-17T16:13:40Z) - CSI Compression using Channel Charting [6.067275317776295]
周波数分割デュプレックス(FDD)におけるマルチアンテナ通信システムでは、移動体から基地局(BS)へのチャネル状態情報(CSI)の報告が必要となる。
CSIレポートに伴うオーバーヘッドを軽減するため、モバイルユーザから送信された圧縮バージョンからBSでオリジナルのCSIを復元する目的で圧縮CSI技術が提案されている。
チャネルチャートは、CSIから無線環境マップを構築するための教師なし次元削減手法である。
論文 参考訳(メタデータ) (2024-12-16T08:30:53Z) - Mining Limited Data Sufficiently: A BERT-inspired Approach for CSI Time Series Application in Wireless Communication and Sensing [15.489377651710106]
チャネル状態情報(CSI)は、無線通信とセンシングシステムの両方の基盤である。
無線センシングシステムでは、CSIを利用して環境変化を予測し、様々な機能を実現する。
深層学習法は,これらの細粒度CSI分類タスクにおいて,モデルに基づくアプローチに対して大きな優位性を示している。
CSI予測と分類タスクのためのCSI-BERT2を提案する。
論文 参考訳(メタデータ) (2024-12-09T06:44:04Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することにより、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
GenAIはDTの構築と更新を推進し、予測精度を改善し、多様なスマート製造に備える。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - Vision-Assisted Digital Twin Creation for mmWave Beam Management [9.608394183713717]
本稿では,1台のカメラと位置情報にのみ依存する,実用的なDigital Twin生成パイプラインとチャネルシミュレータを提案する。
本研究では,ビーム取得における下流サブタスクにおいて,3次元環境を明示的にモデル化しない手法と比較して,性能上の利点を示す。
論文 参考訳(メタデータ) (2024-01-31T12:23:55Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
再構成可能なインテリジェントサーフェス(RIS)は,Tera-Hertz大規模マルチインプットマルチアウトプット(MIMO)通信システムのサービスカバレッジを大幅に向上させることができる。
しかし、パイロットとフィードバック信号のオーバーヘッドが限定された正確な高次元チャネル状態情報(CSI)を得ることは困難である。
本稿では、RIS支援Tera-Hertzマルチユーザアクセスシステムのための、ディープラーニング(DL)に基づくレート分割多重アクセス方式を提案する。
論文 参考訳(メタデータ) (2022-09-18T03:07:37Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
本研究では,ミリ波(mmWave)大規模マルチインプット多重出力(MIMO)システムのためのエンドツーエンドの深層学習に基づくジョイントトランスシーバ設計アルゴリズムを提案する。
我々は受信したパイロットを受信機でフィードバックビットにマッピングし、さらに送信機でハイブリッドプリコーダにフィードバックビットをマッピングするDNNアーキテクチャを開発した。
論文 参考訳(メタデータ) (2021-10-22T20:49:02Z) - Deep Learning-based Resource Allocation For Device-to-Device
Communication [66.74874646973593]
デバイス間通信(D2D)を用いたマルチチャネルセルシステムにおいて,リソース割り当ての最適化のためのフレームワークを提案する。
任意のチャネル条件に対する最適な資源配分戦略をディープニューラルネットワーク(DNN)モデルにより近似する深層学習(DL)フレームワークを提案する。
シミュレーションの結果,提案手法のリアルタイム性能を低速で実現できることが確認された。
論文 参考訳(メタデータ) (2020-11-25T14:19:23Z) - DeepSIC: Deep Soft Interference Cancellation for Multiuser MIMO
Detection [98.43451011898212]
複数のシンボルが同時に送信されるマルチユーザマルチインプットマルチアウトプット(MIMO)設定では、正確なシンボル検出が困難である。
本稿では,DeepSICと呼ぶ反復ソフト干渉キャンセリング(SIC)アルゴリズムの,データ駆動による実装を提案する。
DeepSICは、チャネルを線形にすることなく、限られたトレーニングサンプルから共同検出を行うことを学ぶ。
論文 参考訳(メタデータ) (2020-02-08T18:31:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。