Targeting Alignment: Extracting Safety Classifiers of Aligned LLMs
- URL: http://arxiv.org/abs/2501.16534v1
- Date: Mon, 27 Jan 2025 22:13:05 GMT
- Title: Targeting Alignment: Extracting Safety Classifiers of Aligned LLMs
- Authors: Jean-Charles Noirot Ferrand, Yohan Beugin, Eric Pauley, Ryan Sheatsley, Patrick McDaniel,
- Abstract summary: Alignment in large language models (LLMs) is used to enforce guidelines such as safety.<n>Yet, alignment fails in the face of jailbreak attacks that modify inputs to induce unsafe outputs.<n>We present and evaluate a method to assess the robustness of LLM alignment.
- Score: 4.492376241514766
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Alignment in large language models (LLMs) is used to enforce guidelines such as safety. Yet, alignment fails in the face of jailbreak attacks that modify inputs to induce unsafe outputs. In this paper, we present and evaluate a method to assess the robustness of LLM alignment. We observe that alignment embeds a safety classifier in the target model that is responsible for deciding between refusal and compliance. We seek to extract an approximation of this classifier, called a surrogate classifier, from the LLM. We develop an algorithm for identifying candidate classifiers from subsets of the LLM model. We evaluate the degree to which the candidate classifiers approximate the model's embedded classifier in benign (F1 score) and adversarial (using surrogates in a white-box attack) settings. Our evaluation shows that the best candidates achieve accurate agreement (an F1 score above 80%) using as little as 20% of the model architecture. Further, we find attacks mounted on the surrogate models can be transferred with high accuracy. For example, a surrogate using only 50% of the Llama 2 model achieved an attack success rate (ASR) of 70%, a substantial improvement over attacking the LLM directly, where we only observed a 22% ASR. These results show that extracting surrogate classifiers is a viable (and highly effective) means for modeling (and therein addressing) the vulnerability of aligned models to jailbreaking attacks.
Related papers
- AegisLLM: Scaling Agentic Systems for Self-Reflective Defense in LLM Security [74.22452069013289]
AegisLLM is a cooperative multi-agent defense against adversarial attacks and information leakage.
We show that scaling agentic reasoning system at test-time substantially enhances robustness without compromising model utility.
Comprehensive evaluations across key threat scenarios, including unlearning and jailbreaking, demonstrate the effectiveness of AegisLLM.
arXiv Detail & Related papers (2025-04-29T17:36:05Z) - Secret Breach Detection in Source Code with Large Language Models [2.5484785866796833]
Leaking sensitive information, such as API keys, tokens, and credentials, in source code remains a persistent security threat.
This work aims to enhance secret detection in source code using large language models (LLMs), reducing false positives while maintaining high recall.
arXiv Detail & Related papers (2025-04-26T03:33:14Z) - Semantic-Aware Contrastive Fine-Tuning: Boosting Multimodal Malware Classification with Discriminative Embeddings [2.1874189959020427]
Large Language Models (LLMs) offer potential for generating malware descriptions to aid family classification.
We propose a contrastive fine-tuning (CFT) method that refines LLM embeddings via targeted selection of hard negative samples.
Our approach combines high-similarity negatives to enhance discriminative power and mid-tier negatives to increase embedding diversity.
arXiv Detail & Related papers (2025-04-25T02:41:45Z) - REINFORCE Adversarial Attacks on Large Language Models: An Adaptive, Distributional, and Semantic Objective [57.57786477441956]
We propose an adaptive and semantic optimization problem over the population of responses.
Our objective doubles the attack success rate (ASR) on Llama3 and increases the ASR from 2% to 50% with circuit breaker defense.
arXiv Detail & Related papers (2025-02-24T15:34:48Z) - Palisade -- Prompt Injection Detection Framework [0.9620910657090188]
Large Language Models are vulnerable to malicious prompt injection attacks.
This paper proposes a novel NLP based approach for prompt injection detection.
It emphasizes accuracy and optimization through a layered input screening process.
arXiv Detail & Related papers (2024-10-28T15:47:03Z) - Fine-tuned Large Language Models (LLMs): Improved Prompt Injection Attacks Detection [6.269725911814401]
Large language models (LLMs) are becoming a popular tool as they have significantly advanced in their capability to tackle a wide range of language-based tasks.
However, LLMs applications are highly vulnerable to prompt injection attacks, which poses a critical problem.
This project explores the security vulnerabilities in relation to prompt injection attacks.
arXiv Detail & Related papers (2024-10-28T00:36:21Z) - A Realistic Threat Model for Large Language Model Jailbreaks [87.64278063236847]
In this work, we propose a unified threat model for the principled comparison of jailbreak attacks.
Our threat model combines constraints in perplexity, measuring how far a jailbreak deviates from natural text.
We adapt popular attacks to this new, realistic threat model, with which we, for the first time, benchmark these attacks on equal footing.
arXiv Detail & Related papers (2024-10-21T17:27:01Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications.
Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space.
We propose Diffusion-based Model Inversion (Diff-MI) attacks to alleviate these issues.
arXiv Detail & Related papers (2024-07-16T06:38:49Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - Flames: Benchmarking Value Alignment of LLMs in Chinese [86.73527292670308]
This paper proposes a value alignment benchmark named Flames.
It encompasses both common harmlessness principles and a unique morality dimension that integrates specific Chinese values.
Our findings indicate that all the evaluated LLMs demonstrate relatively poor performance on Flames.
arXiv Detail & Related papers (2023-11-12T17:18:21Z) - Practical Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration [32.15773300068426]
Membership Inference Attacks aim to infer whether a target data record has been utilized for model training.
We propose a Membership Inference Attack based on Self-calibrated Probabilistic Variation (SPV-MIA)
arXiv Detail & Related papers (2023-11-10T13:55:05Z) - Fake Alignment: Are LLMs Really Aligned Well? [91.26543768665778]
This study investigates the substantial discrepancy in performance between multiple-choice questions and open-ended questions.
Inspired by research on jailbreak attack patterns, we argue this is caused by mismatched generalization.
arXiv Detail & Related papers (2023-11-10T08:01:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.