論文の概要: Toward Safe Integration of UAM in Terminal Airspace: UAM Route Feasibility Assessment using Probabilistic Aircraft Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2501.16599v1
- Date: Tue, 28 Jan 2025 00:28:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:41:04.619514
- Title: Toward Safe Integration of UAM in Terminal Airspace: UAM Route Feasibility Assessment using Probabilistic Aircraft Trajectory Prediction
- Title(参考訳): ターミナル空域におけるUAMの安全統合に向けて:確率的航空機軌道予測を用いたUAM経路実現可能性評価
- Authors: Jungwoo Cho, Seongjin Choi,
- Abstract要約: 本研究では,確率論的航空機軌道予測を用いて,都市空力(UAM)経路統合の実現可能性を評価する枠組みを提案する。
この手法は、ソウル大都市圏上空の空域に応用され、複数の高度と車線におけるUAMと従来の交通の相互作用を包含する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Integrating Urban Air Mobility (UAM) into airspace managed by Air Traffic Control (ATC) poses significant challenges, particularly in congested terminal environments. This study proposes a framework to assess the feasibility of UAM route integration using probabilistic aircraft trajectory prediction. By leveraging conditional Normalizing Flows, the framework predicts short-term trajectory distributions of conventional aircraft, enabling UAM vehicles to dynamically adjust speeds and maintain safe separations. The methodology was applied to airspace over Seoul metropolitan area, encompassing interactions between UAM and conventional traffic at multiple altitudes and lanes. The results reveal that different physical locations of lanes and routes experience varying interaction patterns and encounter dynamics. For instance, Lane 1 at lower altitudes (1,500 ft and 2,000 ft) exhibited minimal interactions with conventional aircraft, resulting in the largest separations and the most stable delay proportions. In contrast, Lane 4 near the airport experienced more frequent and complex interactions due to its proximity to departing traffic. The limited trajectory data for departing aircraft in this region occasionally led to tighter separations and increased operational challenges. This study underscores the potential of predictive modeling in facilitating UAM integration while highlighting critical trade-offs between safety and efficiency. The findings contribute to refining airspace management strategies and offer insights for scaling UAM operations in complex urban environments.
- Abstract(参考訳): UAM(Urban Air Mobility)をエア・トラヒック・コントロール(Air Traffic Control、ATC)が管理する空域に統合することは、特に密集したターミナル環境において大きな課題となる。
本研究では,確率論的航空機軌道予測を用いて,UAM経路統合の実現可能性を評価する枠組みを提案する。
条件付き正規化フローを利用することで、UAM車両が速度を動的に調整し、安全な分離を維持することができるように、従来の航空機の短期的な軌道分布を予測する。
この手法は、ソウル大都市圏上空の空域に応用され、複数の高度と車線におけるUAMと従来の交通の相互作用を包含する。
その結果、車線とルートの異なる物理的位置が、様々な相互作用パターンと遭遇ダイナミクスを経験していることが判明した。
例えば、より低い高度(1,500フィートと2,000フィート)のレーン1号は、従来の航空機との最小の相互作用を示し、最大の分離と最も安定した遅延率をもたらした。
対照的に、空港に近いレーン4は、発車に近いため、より頻繁に複雑な相互作用を経験していた。
この地域での出発機に対する限られた軌道データは、時折より厳密な分離と作戦上の課題に繋がった。
本研究は,UAM統合を促進する上での予測モデルの可能性を明らかにするとともに,安全性と効率の重大なトレードオフを強調した。
この知見は, 複雑な都市環境における空域管理戦略の洗練に寄与し, UAMの運用を拡大するための洞察を与える。
関連論文リスト
- Airport take-off and landing optimization through genetic algorithms [55.2480439325792]
本研究は, 航空機の運転における汚染問題に対処し, ゲート割り当てと滑走路スケジューリングを同時に最適化することに焦点を当てた。
本研究は,航空機の離陸・着陸時の燃料燃焼による汚染を最小化するための,革新的な遺伝的アルゴリズムに基づく手法を提案する。
論文 参考訳(メタデータ) (2024-02-29T14:53:55Z) - Toward collision-free trajectory for autonomous and pilot-controlled
unmanned aerial vehicles [1.018017727755629]
本研究は、高度衝突管理手法の開発において、PilotAware Ltdが入手した電子情報(EC)をより活用するものである。
DACM手法の利点は、空中衝突を避けるための広範囲なシミュレーションと実世界のフィールドテストによって実証されてきた。
論文 参考訳(メタデータ) (2023-09-18T18:24:31Z) - Improving Autonomous Separation Assurance through Distributed
Reinforcement Learning with Attention Networks [0.0]
本稿では,AAM廊下内で自律的な自己分離機能を実現するための強化学習フレームワークを提案する。
この問題はマルコフ決定プロセス(Markov Decision Process)として定式化され、サンプル効率の良いオフポリティ・ソフトアクター・クリティック(SAC)アルゴリズムへの新たな拡張を開発することで解決される。
包括的数値計算により,提案手法は高密度・動的環境下で航空機の安全かつ効率的な分離を保証できることが示唆された。
論文 参考訳(メタデータ) (2023-08-09T13:44:35Z) - Inferring Traffic Models in Terminal Airspace from Flight Tracks and
Procedures [52.25258289718559]
本稿では,レーダ監視データから収集したプロシージャデータとフライトトラックから可変性を学習可能な確率モデルを提案する。
任意の航空機数を含む交通量を生成するために,ペアワイズモデルを用いる方法を示す。
論文 参考訳(メタデータ) (2023-03-17T13:58:06Z) - A deep reinforcement learning approach to assess the low-altitude
airspace capacity for urban air mobility [0.0]
都市空力は、低高度空域を利用して高速で安全な旅行手段を提供することを目的としている。
当局は現在も、都市空輸に適用される新しい飛行規則の見直しに取り組んでいる。
深い強化学習アプローチと深い決定論的政策勾配アルゴリズムを用いて,自律型UAV経路計画フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-23T23:38:05Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
本稿では,ディープラーニングを通じて事前学習した表現を組み込むことで,オンラインでの迅速な適応を可能にする学習ベースのアプローチを提案する。
Neural-Flyは、最先端の非線形かつ適応的なコントローラよりもかなり少ないトラッキングエラーで正確な飛行制御を実現する。
論文 参考訳(メタデータ) (2022-05-13T21:55:28Z) - Phased Flight Trajectory Prediction with Deep Learning [8.898269198985576]
過去10年間で民間航空会社や民間機が前例のない増加を遂げたことは、航空交通管理の課題となっている。
正確な飛行軌跡予測は、安全かつ秩序ある飛行の決定に寄与する航空輸送管理において非常に重要である。
本研究では,大型旅客・輸送航空機の飛行軌道予測における最先端手法よりも優れた位相付き飛行軌道予測フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-17T02:16:02Z) - Wireless-Enabled Asynchronous Federated Fourier Neural Network for
Turbulence Prediction in Urban Air Mobility (UAM) [101.80862265018033]
垂直離着陸機(VTOL)が配車サービスに使用される都市空力(UAM)が提案されている。
UAMでは、航空機はエアロドロムを繋ぐ廊下として知られる指定空域で運用することができる。
GBSと航空機間の信頼性の高い通信網により、UAMは適切に空域を利用することができる。
論文 参考訳(メタデータ) (2021-12-26T14:41:52Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - A Simplified Framework for Air Route Clustering Based on ADS-B Data [0.0]
本稿では,ADS-Bデータに基づく空港間の典型的な航空路の検出を支援する枠組みを提案する。
実のところ,エアフロー最適化の計算コストを実質的に低減するために,我々の枠組みを考慮に入れることができる。
論文 参考訳(メタデータ) (2021-07-07T08:55:31Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
無人航空機(UAV)は様々なタスクを実行するために機械学習(ML)を利用する必要がある。
本稿では,UAVスワム内に分散学習(FL)アルゴリズムを実装するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T14:04:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。