Toward Safe Integration of UAM in Terminal Airspace: UAM Route Feasibility Assessment using Probabilistic Aircraft Trajectory Prediction
- URL: http://arxiv.org/abs/2501.16599v1
- Date: Tue, 28 Jan 2025 00:28:16 GMT
- Title: Toward Safe Integration of UAM in Terminal Airspace: UAM Route Feasibility Assessment using Probabilistic Aircraft Trajectory Prediction
- Authors: Jungwoo Cho, Seongjin Choi,
- Abstract summary: This study proposes a framework to assess the feasibility of Urban Air Mobility (UAM) route integration using probabilistic aircraft trajectory prediction.
The methodology was applied to airspace over Seoul metropolitan area, encompassing interactions between UAM and conventional traffic at multiple altitudes and lanes.
- Score: 0.0
- License:
- Abstract: Integrating Urban Air Mobility (UAM) into airspace managed by Air Traffic Control (ATC) poses significant challenges, particularly in congested terminal environments. This study proposes a framework to assess the feasibility of UAM route integration using probabilistic aircraft trajectory prediction. By leveraging conditional Normalizing Flows, the framework predicts short-term trajectory distributions of conventional aircraft, enabling UAM vehicles to dynamically adjust speeds and maintain safe separations. The methodology was applied to airspace over Seoul metropolitan area, encompassing interactions between UAM and conventional traffic at multiple altitudes and lanes. The results reveal that different physical locations of lanes and routes experience varying interaction patterns and encounter dynamics. For instance, Lane 1 at lower altitudes (1,500 ft and 2,000 ft) exhibited minimal interactions with conventional aircraft, resulting in the largest separations and the most stable delay proportions. In contrast, Lane 4 near the airport experienced more frequent and complex interactions due to its proximity to departing traffic. The limited trajectory data for departing aircraft in this region occasionally led to tighter separations and increased operational challenges. This study underscores the potential of predictive modeling in facilitating UAM integration while highlighting critical trade-offs between safety and efficiency. The findings contribute to refining airspace management strategies and offer insights for scaling UAM operations in complex urban environments.
Related papers
- A Reinforcement Learning Approach to Quiet and Safe UAM Traffic Management [17.974572464176394]
Urban air mobility (UAM) is a transformative system that operates various small aerial vehicles in urban environments.
Recent analyses of UAM's operational constraints highlight aircraft noise and system safety as key hurdles to UAM system implementation.
We propose a multi-agent reinforcement learning approach to manage UAM traffic, aiming at both vertical separation assurance and noise mitigation.
arXiv Detail & Related papers (2025-01-15T16:44:35Z) - Airport take-off and landing optimization through genetic algorithms [55.2480439325792]
This research addresses the crucial issue of pollution from aircraft operations, focusing on optimizing both gate allocation and runway scheduling simultaneously.
The study presents an innovative genetic algorithm-based method for minimizing pollution from fuel combustion during aircraft take-off and landing at airports.
arXiv Detail & Related papers (2024-02-29T14:53:55Z) - Improving Autonomous Separation Assurance through Distributed
Reinforcement Learning with Attention Networks [0.0]
We present a reinforcement learning framework to provide autonomous self-separation capabilities within AAM corridors.
The problem is formulated as a Markov Decision Process and solved by developing a novel extension to the sample-efficient, off-policy soft actor-critic (SAC) algorithm.
A comprehensive numerical study shows that the proposed framework can ensure safe and efficient separation of aircraft in high density, dynamic environments.
arXiv Detail & Related papers (2023-08-09T13:44:35Z) - Inferring Traffic Models in Terminal Airspace from Flight Tracks and
Procedures [52.25258289718559]
We propose a probabilistic model that can learn the variability from procedural data and flight tracks collected from radar surveillance data.
We show how a pairwise model can be used to generate traffic involving an arbitrary number of aircraft.
arXiv Detail & Related papers (2023-03-17T13:58:06Z) - A deep reinforcement learning approach to assess the low-altitude
airspace capacity for urban air mobility [0.0]
Urban air mobility aims to provide a fast and secure way of travel by utilizing the low-altitude airspace.
Authorities are still working on the redaction of new flight rules applicable to urban air mobility.
An autonomous UAV path planning framework is proposed using a deep reinforcement learning approach and a deep deterministic policy gradient algorithm.
arXiv Detail & Related papers (2023-01-23T23:38:05Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
We present a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning.
Neural-Fly achieves precise flight control with substantially smaller tracking error than state-of-the-art nonlinear and adaptive controllers.
arXiv Detail & Related papers (2022-05-13T21:55:28Z) - Phased Flight Trajectory Prediction with Deep Learning [8.898269198985576]
The unprecedented increase of commercial airlines and private jets over the past ten years presents a challenge for air traffic control.
Precise flight trajectory prediction is of great significance in air transportation management, which contributes to the decision-making for safe and orderly flights.
We propose a phased flight trajectory prediction framework that can outperform state-of-the-art methods for flight trajectory prediction for large passenger/transport airplanes.
arXiv Detail & Related papers (2022-03-17T02:16:02Z) - Wireless-Enabled Asynchronous Federated Fourier Neural Network for
Turbulence Prediction in Urban Air Mobility (UAM) [101.80862265018033]
Urban air mobility (UAM) has been proposed in which vertical takeoff and landing (VTOL) aircraft are used to provide a ride-hailing service.
In UAM, aircraft can operate in designated air spaces known as corridors, that link the aerodromes.
A reliable communication network between GBSs and aircraft enables UAM to adequately utilize the airspace.
arXiv Detail & Related papers (2021-12-26T14:41:52Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - A Simplified Framework for Air Route Clustering Based on ADS-B Data [0.0]
This paper presents a framework that can support to detect the typical air routes between airports based on ADS-B data.
As a matter of fact, our framework can be taken into account to reduce practically the computational cost for air flow optimization.
arXiv Detail & Related papers (2021-07-07T08:55:31Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.