論文の概要: Separate Motion from Appearance: Customizing Motion via Customizing Text-to-Video Diffusion Models
- arxiv url: http://arxiv.org/abs/2501.16714v1
- Date: Tue, 28 Jan 2025 05:40:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:42:41.343477
- Title: Separate Motion from Appearance: Customizing Motion via Customizing Text-to-Video Diffusion Models
- Title(参考訳): 外観からの分離運動:テキスト・ビデオ拡散モデルのカスタマイズによる動きのカスタマイズ
- Authors: Huijie Liu, Jingyun Wang, Shuai Ma, Jie Hu, Xiaoming Wei, Guoliang Kang,
- Abstract要約: 動きのカスタマイズは、拡散モデル(DM)に適応して、同じ動きの概念の一連のビデオクリップによって指定された動きを持つビデオを生成することを目的としている。
本稿では,TAP (temporal attention purification) とAH ( appearance highway) の2つの新しい手法を提案する。
- 参考スコア(独自算出の注目度): 18.41701130228042
- License:
- Abstract: Motion customization aims to adapt the diffusion model (DM) to generate videos with the motion specified by a set of video clips with the same motion concept. To realize this goal, the adaptation of DM should be possible to model the specified motion concept, without compromising the ability to generate diverse appearances. Thus, the key to solving this problem lies in how to separate the motion concept from the appearance in the adaptation process of DM. Typical previous works explore different ways to represent and insert a motion concept into large-scale pretrained text-to-video diffusion models, e.g., learning a motion LoRA, using latent noise residuals, etc. While those methods can encode the motion concept, they also inevitably encode the appearance in the reference videos, resulting in weakened appearance generation capability. In this paper, we follow the typical way to learn a motion LoRA to encode the motion concept, but propose two novel strategies to enhance motion-appearance separation, including temporal attention purification (TAP) and appearance highway (AH). Specifically, we assume that in the temporal attention module, the pretrained Value embeddings are sufficient to serve as basic components needed by producing a new motion. Thus, in TAP, we choose only to reshape the temporal attention with motion LoRAs so that Value embeddings can be reorganized to produce a new motion. Further, in AH, we alter the starting point of each skip connection in U-Net from the output of each temporal attention module to the output of each spatial attention module. Extensive experiments demonstrate that compared to previous works, our method can generate videos with appearance more aligned with the text descriptions and motion more consistent with the reference videos.
- Abstract(参考訳): 動きのカスタマイズは、拡散モデル(DM)に適応して、同じ動きの概念の一連のビデオクリップによって指定された動きを持つビデオを生成することを目的としている。
この目的を達成するために、DMの適応は、多様な外観を生成する能力を損なうことなく、特定の動きの概念をモデル化することができるべきである。
したがって、この問題を解決する鍵は、運動概念をDMの適応過程の外観から分離する方法にある。
従来の研究は、大規模な事前訓練されたテキスト-ビデオ拡散モデルにモーションの概念を表現し、挿入する様々な方法を探していた。
これらの手法はモーションの概念を符号化するが、参照ビデオの外観も必然的に符号化するので、外観生成能力は低下する。
本稿では,動作概念を符号化するための移動ロラ学習の典型的な方法に従うが,時間的注意の浄化(TAP)や外見のハイウェイ(AH)など,動きの出現分離を強化するための2つの新しい戦略を提案する。
具体的には、時間的注意モジュールでは、事前訓練された値の埋め込みは、新しい動きを生成するために必要な基本的なコンポーネントとして機能するのに十分であると仮定する。
したがって、TAPでは、時間的注意をLoRAで再構成するだけで、値の埋め込みを再構成して新しい動きを生成することができる。
さらに、AHでは、各時空間アテンションモジュールの出力から各空間アテンションモジュールの出力へ、U-Netにおける各スキップ接続の開始点を変更する。
大規模な実験により,本手法は従来の手法と比較して,テキスト記述とより整合した映像や,参照ビデオとより整合した動きを生成できることが実証された。
関連論文リスト
- CustomCrafter: Customized Video Generation with Preserving Motion and Concept Composition Abilities [56.5742116979914]
CustomCrafterは、追加のビデオやリカバリのための微調整なしで、モデルの動き生成と概念的な組み合わせ能力を保持する。
動作生成では,VDMが早期に映像の動きを回復する傾向が見られた。
復調の後期では、特定対象の外観詳細を修復するために、このモジュールを復元する。
論文 参考訳(メタデータ) (2024-08-23T17:26:06Z) - Motion Inversion for Video Customization [31.607669029754874]
本稿では,映像モデルにおける動き表現の探索における広範なギャップに対処する,動き生成のための新しいアプローチを提案する。
本研究では,ビデオから抽出した時間的コヒーレントな埋め込みの集合であるMotion Embeddingsを紹介する。
我々の貢献には、カスタマイズタスクのための調整されたモーション埋め込みと、本手法の実用的メリットと有効性を示すことが含まれる。
論文 参考訳(メタデータ) (2024-03-29T14:14:22Z) - Animate Your Motion: Turning Still Images into Dynamic Videos [58.63109848837741]
本稿では,マルチモーダル入力を管理する新しい手法であるScene and Motion Conditional Diffusion (SMCD)を紹介する。
SMCDは、認識されたモーションコンディショニングモジュールを組み込み、シーン条件を統合するための様々なアプローチを調査する。
我々のデザインは映像の品質、動きの精度、セマンティック・コヒーレンスを大幅に向上させる。
論文 参考訳(メタデータ) (2024-03-15T10:36:24Z) - MotionCrafter: One-Shot Motion Customization of Diffusion Models [66.44642854791807]
ワンショットのインスタンス誘導モーションカスタマイズ手法であるMotionCrafterを紹介する。
MotionCrafterは、基準運動をベースモデルの時間成分に注入する並列時空間アーキテクチャを採用している。
トレーニング中、凍結ベースモデルは外見の正規化を提供し、運動から効果的に外見を分離する。
論文 参考訳(メタデータ) (2023-12-08T16:31:04Z) - NewMove: Customizing text-to-video models with novel motions [74.9442859239997]
動作をカスタマイズしたテキスト・ビデオ・ジェネレーション・モデルを構築するためのアプローチを提案する。
入力として特定の動きを示すビデオサンプルを活用することで,入力動作パターンを多種多様なテキスト特定シナリオに対して学習し,一般化する。
論文 参考訳(メタデータ) (2023-12-07T18:59:03Z) - VMC: Video Motion Customization using Temporal Attention Adaption for
Text-to-Video Diffusion Models [58.93124686141781]
Video Motion Customization (VMC) はビデオ拡散モデルに時間的注意層を適応させる新しいワンショットチューニング手法である。
本研究では, 連続するフレーム間の残留ベクトルを運動基準として用いた新しい運動蒸留法を提案する。
実世界のさまざまな動きや状況にまたがる最先端のビデオ生成モデルに対して,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-12-01T06:50:11Z) - MotionDirector: Motion Customization of Text-to-Video Diffusion Models [24.282240656366714]
Motion Customizationは、既存のテキストとビデオの拡散モデルを適用して、カスタマイズされたモーションでビデオを生成することを目的としている。
我々は、外見と動きの学習を分離するために、デュアルパスのLoRAsアーキテクチャを持つMotionDirectorを提案する。
また,異なる動画の外観と動きの混合や,カスタマイズされたモーションによる単一画像のアニメーションなど,さまざまなダウンストリームアプリケーションもサポートしている。
論文 参考訳(メタデータ) (2023-10-12T16:26:18Z) - Masked Motion Encoding for Self-Supervised Video Representation Learning [84.24773072241945]
Masked Motion MMEは、外観情報と動作情報の両方を再構成し、時間的手がかりを探索する新しい事前学習パラダイムである。
物体の位置変化や形状変化を追跡することで、人間が行動を認識することができるという事実を動機として、マスク領域におけるこれらの2種類の変化を表す運動軌跡を再構築することを提案する。
我々のMMEパラダイムで事前訓練されたモデルでは、長期的かつきめ細かな動きの詳細を予測できる。
論文 参考訳(メタデータ) (2022-10-12T11:19:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。