論文の概要: Motion Inversion for Video Customization
- arxiv url: http://arxiv.org/abs/2403.20193v2
- Date: Wed, 16 Oct 2024 18:35:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:16:18.586893
- Title: Motion Inversion for Video Customization
- Title(参考訳): 動画カスタマイズのためのモーションインバージョン
- Authors: Luozhou Wang, Ziyang Mai, Guibao Shen, Yixun Liang, Xin Tao, Pengfei Wan, Di Zhang, Yijun Li, Yingcong Chen,
- Abstract要約: 本稿では,映像モデルにおける動き表現の探索における広範なギャップに対処する,動き生成のための新しいアプローチを提案する。
本研究では,ビデオから抽出した時間的コヒーレントな埋め込みの集合であるMotion Embeddingsを紹介する。
我々の貢献には、カスタマイズタスクのための調整されたモーション埋め込みと、本手法の実用的メリットと有効性を示すことが含まれる。
- 参考スコア(独自算出の注目度): 31.607669029754874
- License:
- Abstract: In this work, we present a novel approach for motion customization in video generation, addressing the widespread gap in the exploration of motion representation within video generative models. Recognizing the unique challenges posed by the spatiotemporal nature of video, our method introduces Motion Embeddings, a set of explicit, temporally coherent embeddings derived from a given video. These embeddings are designed to integrate seamlessly with the temporal transformer modules of video diffusion models, modulating self-attention computations across frames without compromising spatial integrity. Our approach provides a compact and efficient solution to motion representation, utilizing two types of embeddings: a Motion Query-Key Embedding to modulate the temporal attention map and a Motion Value Embedding to modulate the attention values. Additionally, we introduce an inference strategy that excludes spatial dimensions from the Motion Query-Key Embedding and applies a differential operation to the Motion Value Embedding, both designed to debias appearance and ensure the embeddings focus solely on motion. Our contributions include the introduction of a tailored motion embedding for customization tasks and a demonstration of the practical advantages and effectiveness of our method through extensive experiments.
- Abstract(参考訳): 本研究では,映像生成モデルにおける動き表現の探索における広範なギャップに対処する,動画生成における動きカスタマイズのための新しいアプローチを提案する。
ビデオの時空間的性質によって生じる固有の課題を認識し,ビデオから得られる明示的で時間的に整合した埋め込みの集合であるモーション・エンベディングを導入する。
これらの埋め込みは、ビデオ拡散モデルの時間変換モジュールとシームレスに統合され、空間的整合性を損なうことなくフレーム間の自己注意計算を変調するように設計されている。
提案手法は,時間的注意マップを変調するMotion Query-Key Embeddingと,注意値を変調するMotion Value Embeddingという,2種類の埋め込みを利用して,動き表現のコンパクトかつ効率的なソリューションを提供する。
さらに,空間次元をMotion Query-Key Embeddingから除外し,外見を損なうよう設計したMotion Value Embeddingに差分演算を適用する推論戦略を導入する。
我々の貢献には、カスタマイズタスクのための調整されたモーション埋め込みの導入や、広範囲な実験を通じて、本手法の実用的メリットと有効性を示すことが含まれる。
関連論文リスト
- Generalizable Implicit Motion Modeling for Video Frame Interpolation [51.966062283735596]
フローベースビデオフレーム補間(VFI)における動きの重要性
General Implicit Motion Modeling (IMM)は、モーションモデリングVFIの新規かつ効果的なアプローチである。
我々のGIMMは、既存のフローベースのVFIワークとスムーズに統合できます。
論文 参考訳(メタデータ) (2024-07-11T17:13:15Z) - MotionClone: Training-Free Motion Cloning for Controllable Video Generation [41.621147782128396]
MotionCloneは、参照ビデオから多目的なモーションコントロールビデオ生成までのモーションクローンを可能にする、トレーニング不要のフレームワークである。
MotionCloneは、大域的なカメラの動きと局所的な物体の動きの両方の習熟度を示し、動きの忠実さ、テキストアライメント、時間的一貫性の点で顕著に優れている。
論文 参考訳(メタデータ) (2024-06-08T03:44:25Z) - MotionFollower: Editing Video Motion via Lightweight Score-Guided Diffusion [94.66090422753126]
MotionFollowerは、ビデオモーション編集のための軽量なスコア誘導拡散モデルである。
優れたモーション編集性能を提供し、大きなカメラの動きとアクションのみをサポートする。
最新のモーション編集モデルであるMotionEditorと比較して、MotionFollowerはGPUメモリの約80%の削減を実現している。
論文 参考訳(メタデータ) (2024-05-30T17:57:30Z) - Spectral Motion Alignment for Video Motion Transfer using Diffusion Models [54.32923808964701]
スペクトル運動アライメント(英: Spectral Motion Alignment、SMA)は、フーリエ変換とウェーブレット変換を用いて運動ベクトルを洗練・整列するフレームワークである。
SMAは周波数領域の正規化を取り入れて動きパターンを学習し、全体フレームのグローバルな動きのダイナミクスの学習を容易にする。
大規模な実験は、様々なビデオカスタマイズフレームワーク間の計算効率と互換性を維持しながら、モーション転送を改善するSMAの有効性を示す。
論文 参考訳(メタデータ) (2024-03-22T14:47:18Z) - Animate Your Motion: Turning Still Images into Dynamic Videos [58.63109848837741]
本稿では,マルチモーダル入力を管理する新しい手法であるScene and Motion Conditional Diffusion (SMCD)を紹介する。
SMCDは、認識されたモーションコンディショニングモジュールを組み込み、シーン条件を統合するための様々なアプローチを調査する。
我々のデザインは映像の品質、動きの精度、セマンティック・コヒーレンスを大幅に向上させる。
論文 参考訳(メタデータ) (2024-03-15T10:36:24Z) - Motion-Zero: Zero-Shot Moving Object Control Framework for
Diffusion-Based Video Generation [10.951376101606357]
本研究では,ゼロショット移動物体軌道制御フレームワークであるMotion-Zeroを提案する。
本手法は、トレーニングプロセスなしで、様々な最先端ビデオ拡散モデルに柔軟に適用できる。
論文 参考訳(メタデータ) (2024-01-18T17:22:37Z) - Customizing Motion in Text-to-Video Diffusion Models [79.4121510826141]
動作をカスタマイズしたテキスト・ビデオ・ジェネレーション・モデルを構築するためのアプローチを提案する。
入力として特定の動きを示すビデオサンプルを活用することで,入力動作パターンを多種多様なテキスト特定シナリオに対して学習し,一般化する。
論文 参考訳(メタデータ) (2023-12-07T18:59:03Z) - Learning Variational Motion Prior for Video-based Motion Capture [31.79649766268877]
ビデオに基づくモーションキャプチャーのための新しい変分動作先行学習手法(VMP)を提案する。
我々のフレームワークはフレームワイドポーズ推定における時間的ジッタリングと障害モードを効果的に削減できる。
公開データセットとインザワイルドビデオの両方を用いた実験により、我々のフレームワークの有効性と一般化能力が実証された。
論文 参考訳(メタデータ) (2022-10-27T02:45:48Z) - EAN: Event Adaptive Network for Enhanced Action Recognition [66.81780707955852]
本稿では,映像コンテンツの動的性質を調査するための統合された行動認識フレームワークを提案する。
まず、局所的な手がかりを抽出する際に、動的スケールの時空間カーネルを生成し、多様な事象を適応的に適合させる。
第2に、これらのキューを正確にグローバルなビデオ表現に集約するために、トランスフォーマーによって選択されたいくつかの前景オブジェクト間のインタラクションのみをマイニングすることを提案する。
論文 参考訳(メタデータ) (2021-07-22T15:57:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。