Handling Heterophily in Recommender Systems with Wavelet Hypergraph Diffusion
- URL: http://arxiv.org/abs/2501.14399v1
- Date: Fri, 24 Jan 2025 11:08:29 GMT
- Title: Handling Heterophily in Recommender Systems with Wavelet Hypergraph Diffusion
- Authors: Darnbi Sakong, Thanh Tam Nguyen,
- Abstract summary: We introduce FWHDNN (Fusion-based Wavelet Hypergraph Diffusion Neural Networks), an innovative framework aimed at advancing representation learning in recommendation tasks.
The model incorporates three key components: (1) a cross-difference relation encoder leveraging heterophily-aware hypergraph diffusion to adapt message-passing for diverse class labels, (2) a multi-level cluster-wise encoder employing wavelet transform-based hypergraph neural network layers to capture multi-scale topological relationships, and (3) an integrated multi-modal fusion mechanism that combines structural and textual information through intermediate and late-fusion strategies.
- Score: 8.98789209944451
- License:
- Abstract: Recommender systems are pivotal in delivering personalised user experiences across various domains. However, capturing the heterophily patterns and the multi-dimensional nature of user-item interactions poses significant challenges. To address this, we introduce FWHDNN (Fusion-based Wavelet Hypergraph Diffusion Neural Networks), an innovative framework aimed at advancing representation learning in hypergraph-based recommendation tasks. The model incorporates three key components: (1) a cross-difference relation encoder leveraging heterophily-aware hypergraph diffusion to adapt message-passing for diverse class labels, (2) a multi-level cluster-wise encoder employing wavelet transform-based hypergraph neural network layers to capture multi-scale topological relationships, and (3) an integrated multi-modal fusion mechanism that combines structural and textual information through intermediate and late-fusion strategies. Extensive experiments on real-world datasets demonstrate that FWHDNN surpasses state-of-the-art methods in accuracy, robustness, and scalability in capturing high-order interconnections between users and items.
Related papers
- Hypergraph Diffusion for High-Order Recommender Systems [5.71357784811215]
We introduce WaveHDNN, an innovative wavelet-enhanced hypergraph diffusion framework.
WaveHDNN integrates a Heterophily-aware Collaborative, designed to capture user-item interactions across diverse categories, with a Multi-scale Group-wise Structure.
Cross-view contrastive learning is employed to maintain robust and consistent representations.
arXiv Detail & Related papers (2025-01-28T05:59:29Z) - Divide-and-Conquer: Confluent Triple-Flow Network for RGB-T Salient Object Detection [70.84835546732738]
RGB-Thermal Salient Object Detection aims to pinpoint prominent objects within aligned pairs of visible and thermal infrared images.
Traditional encoder-decoder architectures may not have adequately considered the robustness against noise originating from defective modalities.
We propose the ConTriNet, a robust Confluent Triple-Flow Network employing a Divide-and-Conquer strategy.
arXiv Detail & Related papers (2024-12-02T14:44:39Z) - Retain, Blend, and Exchange: A Quality-aware Spatial-Stereo Fusion Approach for Event Stream Recognition [57.74076383449153]
We propose a novel dual-stream framework for event stream-based pattern recognition via differentiated fusion, termed EFV++.
It models two common event representations simultaneously, i.e., event images and event voxels.
We achieve new state-of-the-art performance on the Bullying10k dataset, i.e., $90.51%$, which exceeds the second place by $+2.21%$.
arXiv Detail & Related papers (2024-06-27T02:32:46Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Learning transformer-based heterogeneously salient graph representation for multimodal remote sensing image classification [42.15709954199397]
A transformer-based heterogeneously salient graph representation (THSGR) approach is proposed in this paper.
First, a multimodal heterogeneous graph encoder is presented to encode distinctively non-Euclidean structural features from heterogeneous data.
A self-attention-free multi-convolutional modulator is designed for effective and efficient long-term dependency modeling.
arXiv Detail & Related papers (2023-11-17T04:06:20Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
Recent interactive segmentation methods iteratively take source image, user guidance and previously predicted mask as the input.
We propose the Feature Decoupling-Recycling Network (FDRN), which decouples the modeling components based on their intrinsic discrepancies.
arXiv Detail & Related papers (2023-08-07T12:26:34Z) - DualHGNN: A Dual Hypergraph Neural Network for Semi-Supervised Node
Classification based on Multi-View Learning and Density Awareness [3.698434507617248]
Graph-based semi-supervised node classification has been shown to become a state-of-the-art approach in many applications with high research value and significance.
This paper proposes the Dual Hypergraph Neural Network (DualHGNN), a new dual connection model integrating both hypergraph structure learning and hypergraph representation learning simultaneously in a unified architecture.
arXiv Detail & Related papers (2023-06-07T07:40:04Z) - Hypergraph Contrastive Collaborative Filtering [44.8586906335262]
We propose a new self-supervised recommendation framework Hypergraph Contrastive Collaborative Filtering (HCCF)
HCCF captures local and global collaborative relations with a hypergraph-enhanced cross-view contrastive learning architecture.
Our model effectively integrates the hypergraph structure encoding with self-supervised learning to reinforce the representation quality of recommender systems.
arXiv Detail & Related papers (2022-04-26T10:06:04Z) - Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference [55.35176938713946]
We develop deep autoencoding topic model (DATM) that uses a hierarchy of gamma distributions to construct its multi-stochastic-layer generative network.
We propose a Weibull upward-downward variational encoder that deterministically propagates information upward via a deep neural network, followed by a downward generative model.
The efficacy and scalability of our models are demonstrated on both unsupervised and supervised learning tasks on big corpora.
arXiv Detail & Related papers (2020-06-15T22:22:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.