Topology-Aware Popularity Debiasing via Simplicial Complexes
- URL: http://arxiv.org/abs/2411.13892v1
- Date: Thu, 21 Nov 2024 07:12:47 GMT
- Title: Topology-Aware Popularity Debiasing via Simplicial Complexes
- Authors: Yanbiao Ji, Yue Ding, Chang Liu, Yuxiang Lu, Xin Xin, Hongtao Lu,
- Abstract summary: Test-time Simplicial Propagation (TSP) incorporates simplicial complexes (SCs) to enhance the expressiveness of Graph Neural Networks (GNNs)
Our approach captures multi-order relationships through SCs, providing a more comprehensive representation of user-item interactions.
Our method produces more uniform distributions of item representations, leading to fairer and more accurate recommendations.
- Score: 19.378410889819165
- License:
- Abstract: Recommender systems (RS) play a critical role in delivering personalized content across various online platforms, leveraging collaborative filtering (CF) as a key technique to generate recommendations based on users' historical interaction data. Recent advancements in CF have been driven by the adoption of Graph Neural Networks (GNNs), which model user-item interactions as bipartite graphs, enabling the capture of high-order collaborative signals. Despite their success, GNN-based methods face significant challenges due to the inherent popularity bias in the user-item interaction graph's topology, leading to skewed recommendations that favor popular items over less-known ones. To address this challenge, we propose a novel topology-aware popularity debiasing framework, Test-time Simplicial Propagation (TSP), which incorporates simplicial complexes (SCs) to enhance the expressiveness of GNNs. Unlike traditional methods that focus on pairwise relationships, our approach captures multi-order relationships through SCs, providing a more comprehensive representation of user-item interactions. By enriching the neighborhoods of tail items and leveraging SCs for feature smoothing, TSP enables the propagation of multi-order collaborative signals and effectively mitigates biased propagation. Our TSP module is designed as a plug-and-play solution, allowing for seamless integration into pre-trained GNN-based models without the need for fine-tuning additional parameters. Extensive experiments on five real-world datasets demonstrate the superior performance of our method, particularly in long-tail recommendation tasks. Visualization results further confirm that TSP produces more uniform distributions of item representations, leading to fairer and more accurate recommendations.
Related papers
- Graph Foundation Models for Recommendation: A Comprehensive Survey [55.70529188101446]
Large language models (LLMs) are designed to process and comprehend natural language, making both approaches highly effective and widely adopted.
Recent research has focused on graph foundation models (GFMs)
GFMs integrate the strengths of GNNs and LLMs to model complex RS problems more efficiently by leveraging the graph-based structure of user-item relationships alongside textual understanding.
arXiv Detail & Related papers (2025-02-12T12:13:51Z) - RelGNN: Composite Message Passing for Relational Deep Learning [56.48834369525997]
We introduce RelGNN, a novel GNN framework specifically designed to capture the unique characteristics of relational databases.
At the core of our approach is the introduction of atomic routes, which are sequences of nodes forming high-order tripartite structures.
RelGNN consistently achieves state-of-the-art accuracy with up to 25% improvement.
arXiv Detail & Related papers (2025-02-10T18:58:40Z) - Hypergraph Diffusion for High-Order Recommender Systems [5.71357784811215]
We introduce WaveHDNN, an innovative wavelet-enhanced hypergraph diffusion framework.
WaveHDNN integrates a Heterophily-aware Collaborative, designed to capture user-item interactions across diverse categories, with a Multi-scale Group-wise Structure.
Cross-view contrastive learning is employed to maintain robust and consistent representations.
arXiv Detail & Related papers (2025-01-28T05:59:29Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
We propose graph contrastive learning to enhance item representations with complex associations from the global view.
We extend the CapsNet module with the elaborately introduced target-attention mechanism to derive users' dynamic preferences.
Our proposed GUESR could not only achieve significant improvements but also could be regarded as a general enhancement strategy.
arXiv Detail & Related papers (2023-03-01T05:46:36Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI) recommendation has become a prominent component in location-based e-commerce.
We propose a Self-supervised Graph-enhanced POI Recommender (S2GRec) for next POI recommendation.
In particular, we devise a novel Graph-enhanced Self-attentive layer to incorporate the collaborative signals from both global transition graph and local trajectory graphs.
arXiv Detail & Related papers (2022-10-22T17:29:34Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Self-Supervised Hypergraph Transformer for Recommender Systems [25.07482350586435]
Self-Supervised Hypergraph Transformer (SHT)
Self-Supervised Hypergraph Transformer (SHT)
Cross-view generative self-supervised learning component is proposed for data augmentation over the user-item interaction graph.
arXiv Detail & Related papers (2022-07-28T18:40:30Z) - Hypergraph Contrastive Collaborative Filtering [44.8586906335262]
We propose a new self-supervised recommendation framework Hypergraph Contrastive Collaborative Filtering (HCCF)
HCCF captures local and global collaborative relations with a hypergraph-enhanced cross-view contrastive learning architecture.
Our model effectively integrates the hypergraph structure encoding with self-supervised learning to reinforce the representation quality of recommender systems.
arXiv Detail & Related papers (2022-04-26T10:06:04Z) - Knowledge-aware Coupled Graph Neural Network for Social Recommendation [29.648300580880683]
We propose a Knowledge-aware Coupled Graph Neural Network (KCGN) that injects the inter-dependent knowledge across items and users into the recommendation framework.
KCGN enables the high-order user- and item-wise relation encoding by exploiting the mutual information for global graph structure awareness.
We further augment KCGN with the capability of capturing dynamic multi-typed user-item interactive patterns.
arXiv Detail & Related papers (2021-10-08T09:13:51Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.