Dream to Drive with Predictive Individual World Model
- URL: http://arxiv.org/abs/2501.16733v1
- Date: Tue, 28 Jan 2025 06:18:29 GMT
- Title: Dream to Drive with Predictive Individual World Model
- Authors: Yinfeng Gao, Qichao Zhang, Da-wei Ding, Dongbin Zhao,
- Abstract summary: This paper presents a novel model-based reinforcement learning (MBRL) method with a predictive individual world model (PIWM) for autonomous driving.
PIWM describes the driving environment from an individual-level perspective and captures vehicles' interactive relations and their intentions.
It is trained in PIWM's imagination and effectively navigates in the urban driving scenes leveraging intention-aware latent states.
- Score: 12.05377034777257
- License:
- Abstract: It is still a challenging topic to make reactive driving behaviors in complex urban environments as road users' intentions are unknown. Model-based reinforcement learning (MBRL) offers great potential to learn a reactive policy by constructing a world model that can provide informative states and imagination training. However, a critical limitation in relevant research lies in the scene-level reconstruction representation learning, which may overlook key interactive vehicles and hardly model the interactive features among vehicles and their long-term intentions. Therefore, this paper presents a novel MBRL method with a predictive individual world model (PIWM) for autonomous driving. PIWM describes the driving environment from an individual-level perspective and captures vehicles' interactive relations and their intentions via trajectory prediction task. Meanwhile, a behavior policy is learned jointly with PIWM. It is trained in PIWM's imagination and effectively navigates in the urban driving scenes leveraging intention-aware latent states. The proposed method is trained and evaluated on simulation environments built upon real-world challenging interactive scenarios. Compared with popular model-free and state-of-the-art model-based reinforcement learning methods, experimental results show that the proposed method achieves the best performance in terms of safety and efficiency.
Related papers
- A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.
This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
We look at the application of Multimodal Large Language Models (MLLMs) in autonomous driving.
Despite advances in models like GPT-4o, their performance in complex driving environments remains largely unexplored.
arXiv Detail & Related papers (2024-05-09T17:52:42Z) - A Cognitive-Based Trajectory Prediction Approach for Autonomous Driving [21.130543517747995]
This paper introduces the Human-Like Trajectory Prediction (H) model, which adopts a teacher-student knowledge distillation framework.
The "teacher" model mimics the visual processing of the human brain, particularly the functions of the occipital and temporal lobes.
The "student" model focuses on real-time interaction and decision-making, capturing essential perceptual cues for accurate prediction.
arXiv Detail & Related papers (2024-02-29T15:22:26Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
We propose Iso-Dream++, a model-based reinforcement learning approach.
We perform policy optimization based on the decoupled latent imaginations.
This enables long-horizon visuomotor control tasks to benefit from isolating mixed dynamics sources in the wild.
arXiv Detail & Related papers (2023-03-27T02:55:56Z) - CADRE: A Cascade Deep Reinforcement Learning Framework for Vision-based
Autonomous Urban Driving [43.269130988225605]
Vision-based autonomous urban driving in dense traffic is quite challenging due to the complicated urban environment and the dynamics of the driving behaviors.
We present a novel CAscade Deep REinforcement learning framework, CADRE, to achieve model-free vision-based autonomous urban driving.
arXiv Detail & Related papers (2022-02-17T10:07:16Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - Objective-aware Traffic Simulation via Inverse Reinforcement Learning [31.26257563160961]
We formulate traffic simulation as an inverse reinforcement learning problem.
We propose a parameter sharing adversarial inverse reinforcement learning model for dynamics-robust simulation learning.
Our proposed model is able to imitate a vehicle's trajectories in the real world while simultaneously recovering the reward function.
arXiv Detail & Related papers (2021-05-20T07:26:34Z) - Learning to drive from a world on rails [78.28647825246472]
We learn an interactive vision-based driving policy from pre-recorded driving logs via a model-based approach.
A forward model of the world supervises a driving policy that predicts the outcome of any potential driving trajectory.
Our method ranks first on the CARLA leaderboard, attaining a 25% higher driving score while using 40 times less data.
arXiv Detail & Related papers (2021-05-03T05:55:30Z) - Bridging Imagination and Reality for Model-Based Deep Reinforcement
Learning [72.18725551199842]
We propose a novel model-based reinforcement learning algorithm, called BrIdging Reality and Dream (BIRD)
It maximizes the mutual information between imaginary and real trajectories so that the policy improvement learned from imaginary trajectories can be easily generalized to real trajectories.
We demonstrate that our approach improves sample efficiency of model-based planning, and achieves state-of-the-art performance on challenging visual control benchmarks.
arXiv Detail & Related papers (2020-10-23T03:22:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.