Consistency Diffusion Models for Single-Image 3D Reconstruction with Priors
- URL: http://arxiv.org/abs/2501.16737v2
- Date: Fri, 31 Jan 2025 12:04:32 GMT
- Title: Consistency Diffusion Models for Single-Image 3D Reconstruction with Priors
- Authors: Chenru Jiang, Chengrui Zhang, Xi Yang, Jie Sun, Yifei Zhang, Bin Dong, Kaizhu Huang,
- Abstract summary: We introduce a pioneering training framework under diffusion models.
We convert 3D structural priors derived from the initial 3D point cloud as a bound term.
We extract and incorporate 2D priors from the single input image, projecting them onto the 3D point cloud to enrich the guidance for diffusion training.
- Score: 24.086775858948755
- License:
- Abstract: This paper delves into the study of 3D point cloud reconstruction from a single image. Our objective is to develop the Consistency Diffusion Model, exploring synergistic 2D and 3D priors in the Bayesian framework to ensure superior consistency in the reconstruction process, a challenging yet critical requirement in this field. Specifically, we introduce a pioneering training framework under diffusion models that brings two key innovations. First, we convert 3D structural priors derived from the initial 3D point cloud as a bound term to increase evidence in the variational Bayesian framework, leveraging these robust intrinsic priors to tightly govern the diffusion training process and bolster consistency in reconstruction. Second, we extract and incorporate 2D priors from the single input image, projecting them onto the 3D point cloud to enrich the guidance for diffusion training. Our framework not only sidesteps potential model learning shifts that may arise from directly imposing additional constraints during training but also precisely transposes the 2D priors into the 3D domain. Extensive experimental evaluations reveal that our approach sets new benchmarks in both synthetic and real-world datasets. The code is included with the submission.
Related papers
- Zero-1-to-G: Taming Pretrained 2D Diffusion Model for Direct 3D Generation [66.75243908044538]
We introduce Zero-1-to-G, a novel approach to direct 3D generation on Gaussian splats using pretrained 2D diffusion models.
To incorporate 3D awareness, we introduce cross-view and cross-attribute attention layers, which capture complex correlations and enforce 3D consistency across generated splats.
This makes Zero-1-to-G the first direct image-to-3D generative model to effectively utilize pretrained 2D diffusion priors, enabling efficient training and improved generalization to unseen objects.
arXiv Detail & Related papers (2025-01-09T18:37:35Z) - DSplats: 3D Generation by Denoising Splats-Based Multiview Diffusion Models [67.50989119438508]
We introduce DSplats, a novel method that directly denoises multiview images using Gaussian-based Reconstructors to produce realistic 3D assets.
Our experiments demonstrate that DSplats not only produces high-quality, spatially consistent outputs, but also sets a new standard in single-image to 3D reconstruction.
arXiv Detail & Related papers (2024-12-11T07:32:17Z) - 4D Contrastive Superflows are Dense 3D Representation Learners [62.433137130087445]
We introduce SuperFlow, a novel framework designed to harness consecutive LiDAR-camera pairs for establishing pretraining objectives.
To further boost learning efficiency, we incorporate a plug-and-play view consistency module that enhances alignment of the knowledge distilled from camera views.
arXiv Detail & Related papers (2024-07-08T17:59:54Z) - Retrieval-Augmented Score Distillation for Text-to-3D Generation [30.57225047257049]
We introduce novel framework for retrieval-based quality enhancement in text-to-3D generation.
We conduct extensive experiments to demonstrate that ReDream exhibits superior quality with increased geometric consistency.
arXiv Detail & Related papers (2024-02-05T12:50:30Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with Pre-trained Vision-Language Models [59.13757801286343]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.
We introduce the FILP-3D framework with two novel components: the Redundant Feature Eliminator (RFE) for feature space misalignment and the Spatial Noise Compensator (SNC) for significant noise.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - Learn to Optimize Denoising Scores for 3D Generation: A Unified and
Improved Diffusion Prior on NeRF and 3D Gaussian Splatting [60.393072253444934]
We propose a unified framework aimed at enhancing the diffusion priors for 3D generation tasks.
We identify a divergence between the diffusion priors and the training procedures of diffusion models that substantially impairs the quality of 3D generation.
arXiv Detail & Related papers (2023-12-08T03:55:34Z) - Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views [47.215089338101066]
We present Sparse3D, a novel 3D reconstruction method tailored for sparse view inputs.
Our approach distills robust priors from a multiview-consistent diffusion model to refine a neural radiance field.
By tapping into 2D priors from powerful image diffusion models, our integrated model consistently delivers high-quality results.
arXiv Detail & Related papers (2023-08-27T11:52:00Z) - Take-A-Photo: 3D-to-2D Generative Pre-training of Point Cloud Models [97.58685709663287]
generative pre-training can boost the performance of fundamental models in 2D vision.
In 3D vision, the over-reliance on Transformer-based backbones and the unordered nature of point clouds have restricted the further development of generative pre-training.
We propose a novel 3D-to-2D generative pre-training method that is adaptable to any point cloud model.
arXiv Detail & Related papers (2023-07-27T16:07:03Z) - Let 2D Diffusion Model Know 3D-Consistency for Robust Text-to-3D
Generation [39.50894560861625]
3DFuse is a novel framework that incorporates 3D awareness into pretrained 2D diffusion models.
We introduce a training strategy that enables the 2D diffusion model learns to handle the errors and sparsity within the coarse 3D structure for robust generation.
arXiv Detail & Related papers (2023-03-14T14:24:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.