論文の概要: Efficient Knowledge Distillation of SAM for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2501.16740v1
- Date: Tue, 28 Jan 2025 06:33:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:42:06.018299
- Title: Efficient Knowledge Distillation of SAM for Medical Image Segmentation
- Title(参考訳): 医用画像分割のためのSAMの効率的な知識蒸留
- Authors: Kunal Dasharath Patil, Gowthamaan Palani, Ganapathy Krishnamurthi,
- Abstract要約: Segment Anything Model (SAM)はインタラクティブなイメージセグメンテーションの新しい標準を設定し、さまざまなタスクで堅牢なパフォーマンスを提供する。
我々は, エンコーダとデコーダの最適化を, Mean Squared Error (MSE) と Perceptual Loss の組み合わせで組み合わせた新しい知識蒸留手法 KD SAM を提案する。
KD SAMはセグメンテーションの精度と計算効率を効果的にバランスさせ、資源制約のある環境でリアルタイムの医用画像セグメンテーションに適している。
- 参考スコア(独自算出の注目度): 0.04672991859386895
- License:
- Abstract: The Segment Anything Model (SAM) has set a new standard in interactive image segmentation, offering robust performance across various tasks. However, its significant computational requirements limit its deployment in real-time or resource-constrained environments. To address these challenges, we propose a novel knowledge distillation approach, KD SAM, which incorporates both encoder and decoder optimization through a combination of Mean Squared Error (MSE) and Perceptual Loss. This dual-loss framework captures structural and semantic features, enabling the student model to maintain high segmentation accuracy while reducing computational complexity. Based on the model evaluation on datasets, including Kvasir-SEG, ISIC 2017, Fetal Head Ultrasound, and Breast Ultrasound, we demonstrate that KD SAM achieves comparable or superior performance to the baseline models, with significantly fewer parameters. KD SAM effectively balances segmentation accuracy and computational efficiency, making it well-suited for real-time medical image segmentation applications in resource-constrained environments.
- Abstract(参考訳): Segment Anything Model (SAM)はインタラクティブなイメージセグメンテーションの新しい標準を設定し、さまざまなタスクで堅牢なパフォーマンスを提供する。
しかし、その重要な計算要求は、リアルタイムまたはリソース制約のある環境への展開を制限する。
これらの課題に対処するために, エンコーダとデコーダの最適化を, Mean Squared Error (MSE) と Perceptual Loss の組み合わせで組み合わせた新しい知識蒸留手法 KD SAM を提案する。
このデュアルロスフレームワークは構造的および意味的な特徴を捉え、計算複雑性を低減しつつ高いセグメンテーション精度を維持することができる。
Kvasir-SEG、ISIC 2017、Fetal Head Ultrasound、Breast Ultrasoundといったデータセットのモデル評価に基づいて、KD SAMがベースラインモデルと同等または優れた性能を達成でき、パラメータが大幅に少ないことを実証した。
KD SAMはセグメンテーションの精度と計算効率を効果的にバランスさせ、資源制約のある環境でリアルタイムの医用画像セグメンテーションに適している。
関連論文リスト
- MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
MedCLIP-SAMv2はCLIPとSAMモデルを統合して臨床スキャンのセグメンテーションを行う新しいフレームワークである。
提案手法は,DHN-NCE(Decoupled Hard Negative Noise Contrastive Estimation)によるBiomedCLIPモデルの微調整を含む。
また,ゼロショットセグメンテーションラベルを弱教師付きパラダイム内で使用することにより,セグメンテーション品質をさらに向上する。
論文 参考訳(メタデータ) (2024-09-28T23:10:37Z) - Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance(UOIS)は、非構造環境で動作する自律ロボットにとって不可欠である。
UOISタスクのためのデータ効率のよいソリューションであるUOIS-SAMを提案する。
UOIS-SAMは、(i)HeatmapベースのPrompt Generator(HPG)と(ii)SAMのマスクデコーダに適応する階層識別ネットワーク(HDNet)の2つの重要なコンポーネントを統合する。
論文 参考訳(メタデータ) (2024-09-23T19:05:50Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
本研究では,空間スペクトルSSMを用いたクロススキャンマンバ(CS-Mamba)を提案する。
実験の結果, CS-Mambaは最先端の性能を達成し, マスク付きトレーニング手法によりスムーズな特徴を再構築し, 視覚的品質を向上させることができた。
論文 参考訳(メタデータ) (2024-08-01T15:14:10Z) - RobustSAM: Segment Anything Robustly on Degraded Images [19.767828436963317]
Segment Anything Model (SAM) は画像セグメンテーションにおける変換的アプローチとして登場した。
低画質画像におけるSAMの性能を向上させるRobust Segment Anything Model (RobustSAM)を提案する。
提案手法は, SAMに基づくダウンストリームタスクにおいて, 単一画像のデハージングやデブロアリングなどの性能を効果的に向上することを目的としている。
論文 参考訳(メタデータ) (2024-06-13T23:33:59Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
脳腫瘍のセグメンテーションは、特にマルチモーダルMRI(Multi-modal magnetic resonance imaging)における重要な課題である。
本稿では,不完全なモダリティデータから頑健な特徴学習を可能にする,マスク付き予測事前学習方式を提案する。
微調整段階において、我々は知識蒸留技術を用いて、完全なモダリティデータと欠落したモダリティデータの間に特徴を整列させ、同時にモデルロバスト性を向上する。
論文 参考訳(メタデータ) (2024-06-12T20:35:16Z) - WSI-SAM: Multi-resolution Segment Anything Model (SAM) for histopathology whole-slide images [8.179859593451285]
病理画像の正確なオブジェクト分割機能を備えたWSI-SAM, Segment Anything Model (SAM) を提案する。
トレーニングオーバーヘッドを最小限にしながら、トレーニング済みの知識を完全に活用するために、SAMは凍結し、最小限のパラメータしか導入しません。
本モデルでは, 膵管癌 in situ (DCIS) セグメンテーションタスクと乳癌転移セグメンテーションタスクにおいて, SAMを4.1, 2.5パーセント上回った。
論文 参考訳(メタデータ) (2024-03-14T10:30:43Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - SAMIHS: Adaptation of Segment Anything Model for Intracranial Hemorrhage
Segmentation [18.867207134086193]
脳梗塞診断と手術計画において,頭蓋内出血分節は重要かつ困難なステップである。
そこで我々は,脳内出血セグメンテーションのためのSAM-based parameter- efficient fine-tuning法(SAMIHS)を提案する。
2つの公開データセットに対する実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-11-14T14:23:09Z) - High Quality Segmentation for Ultra High-resolution Images [72.97958314291648]
超高分解能セグメンテーション精錬作業のための連続精細モデルを提案する。
提案手法は画像分割精細化において高速かつ効果的である。
論文 参考訳(メタデータ) (2021-11-29T11:53:06Z) - Efficient Sharpness-aware Minimization for Improved Training of Neural
Networks [146.2011175973769]
本稿では,SAM s の効率を高コストで向上する高効率シャープネス認識最小化器 (M) を提案する。
Mには、Stochastic Weight PerturbationとSharpness-Sensitive Data Selectionという、2つの新しい効果的なトレーニング戦略が含まれている。
我々は、CIFARとImageNetデータセットの広範な実験を通して、ESAMはSAMよりも100%余分な計算を40%のvis-a-visベースに必要とせずに効率を向上させることを示した。
論文 参考訳(メタデータ) (2021-10-07T02:20:37Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
効率と精度を両立させるためのフル量子化画像超解像フレームワーク(FQSR)を提案する。
我々は、SRResNet、SRGAN、EDSRを含む複数の主流超解像アーキテクチャに量子化スキームを適用した。
低ビット量子化を用いたFQSRは、5つのベンチマークデータセットの完全精度と比較すると、パー性能で実現できる。
論文 参考訳(メタデータ) (2020-11-29T03:53:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。