論文の概要: Toward Relative Positional Encoding in Spiking Transformers
- arxiv url: http://arxiv.org/abs/2501.16745v2
- Date: Mon, 19 May 2025 13:35:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 21:29:33.30296
- Title: Toward Relative Positional Encoding in Spiking Transformers
- Title(参考訳): スパイキング変換器の相対的位置符号化に向けて
- Authors: Changze Lv, Yansen Wang, Dongqi Han, Yifei Shen, Xiaoqing Zheng, Xuanjing Huang, Dongsheng Li,
- Abstract要約: スパイキングニューラルネットワーク(スパイキングニューラルネット、英: Spiking Neural Network、SNN)は、脳内のニューロンが離散スパイクを通してどのように通信するかを模倣するバイオインスパイアネットワークである。
スパイキングトランスフォーマーにおける相対的位置符号化(RPE)を近似するためのいくつかの戦略を導入する。
- 参考スコア(独自算出の注目度): 52.62008099390541
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking neural networks (SNNs) are bio-inspired networks that mimic how neurons in the brain communicate through discrete spikes, which have great potential in various tasks due to their energy efficiency and temporal processing capabilities. SNNs with self-attention mechanisms (spiking Transformers) have recently shown great advancements in various tasks, and inspired by traditional Transformers, several studies have demonstrated that spiking absolute positional encoding can help capture sequential relationships for input data, enhancing the capabilities of spiking Transformers for tasks such as sequential modeling and image classification. However, how to incorporate relative positional information into SNNs remains a challenge. In this paper, we introduce several strategies to approximate relative positional encoding (RPE) in spiking Transformers while preserving the binary nature of spikes. Firstly, we formally prove that encoding relative distances with Gray Code ensures that the binary representations of positional indices maintain a constant Hamming distance whenever their decimal values differ by a power of two, and we propose Gray-PE based on this property. In addition, we propose another RPE method called Log-PE, which combines the logarithmic form of the relative distance matrix directly into the spiking attention map. Furthermore, we extend our RPE methods to a two-dimensional form, making them suitable for processing image patches. We evaluate our RPE methods on various tasks, including time series forecasting, text classification, and patch-based image classification, and the experimental results demonstrate a satisfying performance gain by incorporating our RPE methods across many architectures.
- Abstract(参考訳): スパイキングニューラルネットワーク(Spike Neural Network, SNN)は、脳内のニューロンが離散スパイクを通してどのように通信するかを模したバイオインスパイアネットワークである。
自己注意機構(スポーキングトランスフォーマー)を持つSNNは、近年、様々なタスクにおいて大きな進歩を見せており、従来のトランスフォーマーに触発されたいくつかの研究は、絶対的な位置エンコーディングが入力データのシーケンシャルな関係を捉え、シーケンシャルなモデリングや画像分類といったタスクのためのスパイキングトランスフォーマーの機能を高めることを実証している。
しかし、SNNに相対的な位置情報を組み込む方法は依然として課題である。
本稿では、スパイクのバイナリ特性を保ちながら、スパイク変換器における相対的位置符号化(RPE)を近似するためのいくつかの戦略を紹介する。
まず, 位置指標の2進表現が2つの値の値が異なる場合, 一定のハミング距離を維持することを, グレーコードとの相対距離の符号化が保証していることを正式に証明し, この特性に基づいてグレイPEを提案する。
さらに,相対距離行列の対数形式をスパイキングアテンションマップに直接組み合わせたLog-PE法を提案する。
さらに,RPE法を2次元に拡張し,画像パッチ処理に適した方法を提案する。
時系列予測やテキスト分類,パッチベースの画像分類など,さまざまなタスクにおけるRPE手法の評価を行った。
関連論文リスト
- Transformer Meets Twicing: Harnessing Unattended Residual Information [2.1605931466490795]
トランスフォーマーベースのディープラーニングモデルは、多くの言語やビジョンタスクで最先端のパフォーマンスを達成した。
自己注意機構は複雑なデータパターンを扱えることが証明されているが、注意行列の表現能力はトランスフォーマー層間で著しく低下する。
本研究では,NLM平滑化の低パス動作を軽減するため,非パラメトリック回帰におけるカーネルツイシング手順を用いた新しいアテンション機構であるTwicing Attentionを提案する。
論文 参考訳(メタデータ) (2025-03-02T01:56:35Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
医用画像セグメンテーションのためのシンプルなUNet-Transformer(seUNet-Trans)モデルを提案する。
提案手法では,UNetモデルを特徴抽出器として設計し,入力画像から複数の特徴マップを生成する。
UNetアーキテクチャと自己認識機構を活用することで、我々のモデルはローカルとグローバルの両方のコンテキスト情報を保存するだけでなく、入力要素間の長距離依存関係をキャプチャできる。
論文 参考訳(メタデータ) (2023-10-16T01:13:38Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Optimizing Vision Transformers for Medical Image Segmentation and
Few-Shot Domain Adaptation [11.690799827071606]
我々はCS-Unet(Convolutional Swin-Unet)トランスフォーマーブロックを提案し、パッチ埋め込み、プロジェクション、フィードフォワードネットワーク、サンプリングおよびスキップ接続に関連する設定を最適化する。
CS-Unetはゼロからトレーニングすることができ、各機能プロセスフェーズにおける畳み込みの優位性を継承する。
実験によると、CS-Unetは事前トレーニングなしで、パラメータが少ない2つの医療用CTおよびMRIデータセットに対して、最先端の他のデータセットを大きなマージンで上回っている。
論文 参考訳(メタデータ) (2022-10-14T19:18:52Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
近年の視覚変換器と自己注意は,様々なコンピュータビジョンタスクにおいて有望な成果を上げている。
我々は,CNNの局所的特徴とトランスフォーマーが捉えた長距離依存性を活用する,超解像(SR)タスクのための効果的なハイブリッドアーキテクチャを提案する。
提案手法は,多数のベンチマークデータセットから最先端のSR結果を得る。
論文 参考訳(メタデータ) (2022-03-15T06:52:25Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
注意の少ないvIsion Transformerは、畳み込み、完全接続層、自己アテンションが、画像パッチシーケンスを処理するためにほぼ同等な数学的表現を持つという事実に基づいている。
提案したLITは、画像分類、オブジェクト検出、インスタンス分割を含む画像認識タスクにおいて有望な性能を達成する。
論文 参考訳(メタデータ) (2021-05-29T05:26:07Z) - TransCamP: Graph Transformer for 6-DoF Camera Pose Estimation [77.09542018140823]
本稿では、カメラ再配置問題に対処するため、グラフトランスフォーマーバックボーン、すなわちTransCamPを用いたニューラルネットワークアプローチを提案する。
TransCamPは、画像の特徴、カメラポーズ情報、フレーム間の相対的なカメラモーションを、エンコードされたグラフ属性に効果的に融合する。
論文 参考訳(メタデータ) (2021-05-28T19:08:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。