論文の概要: ITVTON:Virtual Try-On Diffusion Transformer Model Based on Integrated Image and Text
- arxiv url: http://arxiv.org/abs/2501.16757v1
- Date: Tue, 28 Jan 2025 07:24:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 22:09:11.083538
- Title: ITVTON:Virtual Try-On Diffusion Transformer Model Based on Integrated Image and Text
- Title(参考訳): ITVTON:統合画像とテキストに基づく仮想拡散変圧器モデル
- Authors: Haifeng Ni,
- Abstract要約: ITVTONは,衣料品とキャラクタイメージを入力として空間チャネルに沿って組み合わせることで,衣料品とキャラクタのインタラクションを向上させる手法である。
複数の画像からテキストを統合的に記述することで、生成した視覚効果の現実性を高める。
実験では、ITVTONは質的にも定量的にもベースライン法より優れている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in virtual fitting for characters and clothing have leveraged diffusion models to improve the realism of garment fitting. However, challenges remain in handling complex scenes and poses, which can result in unnatural garment fitting and poorly rendered intricate patterns. In this work, we introduce ITVTON, a novel method that enhances clothing-character interactions by combining clothing and character images along spatial channels as inputs, thereby improving fitting accuracy for the inpainting model. Additionally, we incorporate integrated textual descriptions from multiple images to boost the realism of the generated visual effects. To optimize computational efficiency, we limit training to the attention parameters within a single diffusion transformer (Single-DiT) block. To more rigorously address the complexities of real-world scenarios, we curated training samples from the IGPair dataset, thereby enhancing ITVTON's performance across diverse environments. Extensive experiments demonstrate that ITVTON outperforms baseline methods both qualitatively and quantitatively, setting a new standard for virtual fitting tasks.
- Abstract(参考訳): キャラクタや衣服の仮想フィッティングの最近の進歩は, 拡散モデルを活用して, 衣服フィッティングの現実性を高めている。
しかし、複雑なシーンやポーズを扱う際には課題が残っており、不自然な服装や複雑なパターンが不自然な結果をもたらす可能性がある。
そこで本研究では,空間チャネルに沿って衣料品とキャラクタイメージを合成することで,衣料品とキャラクタのインタラクションを向上する新しい手法であるITVTONについて紹介する。
さらに,複数の画像からのテキスト記述を統合し,生成した視覚効果の現実性を高める。
計算効率を最適化するため,単一拡散変圧器(Single-DiT)ブロック内の注意パラメータにトレーニングを限定する。
実世界のシナリオの複雑さをより厳密に解決するため、IGPairデータセットからトレーニングサンプルをキュレートし、様々な環境におけるITVTONのパフォーマンスを向上した。
大規模な実験により、ITVTONは定性的かつ定量的にベースライン法より優れており、仮想的適合タスクの新たな標準が設定されている。
関連論文リスト
- ITA-MDT: Image-Timestep-Adaptive Masked Diffusion Transformer Framework for Image-Based Virtual Try-On [21.938301712852226]
本稿では、画像ベース仮想トライオン(IVTON)のための画像時間行列拡散変換フレームワークであるITA-MDTを紹介する。
IVTONタスクは、ある画像から別の人物に衣服をシームレスに重ね合わせ、指定された衣服を身に着けている人の現実的な描写を作成する。
論文 参考訳(メタデータ) (2025-03-26T10:49:44Z) - TryOffAnyone: Tiled Cloth Generation from a Dressed Person [1.4732811715354452]
高忠実なタイル付き衣料品画像は、パーソナライズされたレコメンデーション、服装構成、バーチャルトライオンシステムに不可欠である。
本研究では, 微調整型安定拡散モデルを用いた新しい手法を提案する。
本手法は,服飾用マスクを統合し,対象の衣服を効果的に分離・処理する,一段ネットワーク設計の合理化を特徴とする。
論文 参考訳(メタデータ) (2024-12-11T17:41:53Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
画像超解像のための効果的な拡散変換器(DiT-SR)を設計する。
実際には、DiT-SRは全体のU字型アーキテクチャを活用し、すべての変圧器ブロックに対して均一な等方性設計を採用する。
我々は、広く使われているAdaLNの制限を分析し、周波数適応型時間-ステップ条件付けモジュールを提案する。
論文 参考訳(メタデータ) (2024-09-29T07:14:16Z) - IMAGDressing-v1: Customizable Virtual Dressing [58.44155202253754]
IMAGDressing-v1は、固定された衣服とオプション条件で自由に編集可能な人間の画像を生成する仮想ドレッシングタスクである。
IMAGDressing-v1は、CLIPのセマンティック特徴とVAEのテクスチャ特徴をキャプチャする衣料UNetを組み込んでいる。
本稿では,凍結自己注意とトレーニング可能なクロスアテンションを含むハイブリッドアテンションモジュールを提案する。
論文 参考訳(メタデータ) (2024-07-17T16:26:30Z) - Self-Supervised Vision Transformer for Enhanced Virtual Clothes Try-On [21.422611451978863]
本稿では,仮想衣料試着において,自己監督型視覚変換器(ViT)と拡散モデルを用いた革新的なアプローチを提案する。
提案手法は,ViTが生成するローカル衣料品のイメージ埋め込みとグローバルな衣料品との対比により,ディテールの強調を強調する。
実験結果は、仮想試行体験における現実性と詳細の精度の大幅な進歩を示す。
論文 参考訳(メタデータ) (2024-06-15T07:46:22Z) - AnyFit: Controllable Virtual Try-on for Any Combination of Attire Across Any Scenario [50.62711489896909]
AnyFitは、高解像度のベンチマークと実世界のデータのベースラインを、大きなギャップで上回っている。
AnyFitの高忠実度バーチャル試作品における印象的なパフォーマンスは、あらゆるイメージから見ても、ファッションコミュニティにおける将来の研究の新たな道を切り開くものです。
論文 参考訳(メタデータ) (2024-05-28T13:33:08Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
本稿では,画像のデブロアに対する簡易かつ効果的な視覚状態空間モデル(EVSSM)を提案する。
論文 参考訳(メタデータ) (2024-05-23T09:13:36Z) - Improving Diffusion Models for Authentic Virtual Try-on in the Wild [53.96244595495942]
本稿では,キュレートされた衣服を身に着けている人のイメージをレンダリングする,イメージベースの仮想試行について考察する。
衣服の忠実度を改善し,仮想試行画像を生成する新しい拡散モデルを提案する。
本稿では,一対の人着画像を用いたカスタマイズ手法を提案する。
論文 参考訳(メタデータ) (2024-03-08T08:12:18Z) - Federated Multi-View Synthesizing for Metaverse [52.59476179535153]
メタバースは没入型エンターテイメント、教育、ビジネスアプリケーションを提供すると期待されている。
無線ネットワーク上のバーチャルリアリティ(VR)伝送は、データと計算集約である。
我々は,メタバースにおける無線コンテンツ配信のために,効率的な合成,記憶,通信資源を提供する,新しい多視点合成フレームワークを開発した。
論文 参考訳(メタデータ) (2023-12-18T13:51:56Z) - DiffiT: Diffusion Vision Transformers for Image Generation [88.08529836125399]
ViT(Vision Transformer)は、特に認識タスクにおいて、強力なモデリング機能とスケーラビリティを実証している。
拡散型生成学習におけるViTの有効性について検討し、拡散ビジョン変換器(DiffiT)と呼ばれる新しいモデルを提案する。
DiffiTはパラメータ効率が大幅に向上した高忠実度画像を生成するのに驚くほど効果的である。
論文 参考訳(メタデータ) (2023-12-04T18:57:01Z) - HAT: Hybrid Attention Transformer for Image Restoration [61.74223315807691]
トランスフォーマーに基づく手法は、画像の超解像や復調といった画像復元タスクにおいて顕著な性能を示している。
本稿では,新たなHAT(Hybrid Attention Transformer)を提案する。
我々のHATは,定量的かつ定性的に,最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-09-11T05:17:55Z) - AICT: An Adaptive Image Compression Transformer [18.05997169440533]
我々は、より単純で効果的なTranformerベースのチャネルワイド自動回帰事前モデルを提案し、絶対画像圧縮変換器(ICT)を実現する。
提案したICTは、潜在表現からグローバルとローカルの両方のコンテキストをキャプチャできる。
我々は、サンドイッチのConvNeXtベースのプリ/ポストプロセッサで学習可能なスケーリングモジュールを活用し、よりコンパクトな潜在表現を正確に抽出する。
論文 参考訳(メタデータ) (2023-07-12T11:32:02Z) - C-VTON: Context-Driven Image-Based Virtual Try-On Network [1.0832844764942349]
本稿では,選択した衣服を対象者に確実に転送するコンテキスト駆動型仮想トライオンネットワーク(C-VTON)を提案する。
C-VTONパイプラインのコアには、(i)入力画像中の人物のポーズに目的の衣服を効率よく整列する幾何マッチング手順と、(ii)最終試行結果に様々な種類の文脈情報を利用する強力な画像生成装置とがある。
論文 参考訳(メタデータ) (2022-12-08T17:56:34Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
本研究では,高忠実度人物画像合成に拡散モデルをいかに応用できるかを示す。
2つの大規模ベンチマークとユーザスタディの結果は、挑戦的なシナリオ下で提案したアプローチのフォトリアリズムを実証している。
論文 参考訳(メタデータ) (2022-11-22T18:59:50Z) - DynaST: Dynamic Sparse Transformer for Exemplar-Guided Image Generation [56.514462874501675]
本稿では,動的スパースアテンションに基づくトランスフォーマーモデルを提案する。
このアプローチの核心は、ある位置がフォーカスすべき最適なトークン数の変化をカバーすることに特化した、新しいダイナミックアテンションユニットです。
3つの応用、ポーズ誘導型人物画像生成、エッジベース顔合成、歪みのない画像スタイル転送の実験により、DynaSTは局所的な詳細において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2022-07-13T11:12:03Z) - Controllable Person Image Synthesis with Spatially-Adaptive Warped
Normalization [72.65828901909708]
制御可能な人物画像生成は、望ましい属性を持つ現実的な人間の画像を作成することを目的としている。
本稿では,学習フロー場とワープ変調パラメータを統合した空間適応型ワープ正規化(SAWN)を提案する。
本稿では,テクスチャ・トランスファータスクの事前学習モデルを洗練するための,新たな自己学習部分置換戦略を提案する。
論文 参考訳(メタデータ) (2021-05-31T07:07:44Z) - Intriguing Properties of Vision Transformers [114.28522466830374]
視覚変換器(ViT)は、様々なマシンビジョン問題にまたがって印象的な性能を誇示している。
我々は、この問題を広範囲の実験を通して体系的に研究し、高性能畳み込みニューラルネットワーク(CNN)との比較を行った。
ViTsの効果的な特徴は、自己認識機構によって可能なフレキシブルな受容と動的場によるものであることを示す。
論文 参考訳(メタデータ) (2021-05-21T17:59:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。