A Stochastic Dynamical Theory of LLM Self-Adversariality: Modeling Severity Drift as a Critical Process
- URL: http://arxiv.org/abs/2501.16783v1
- Date: Tue, 28 Jan 2025 08:08:25 GMT
- Title: A Stochastic Dynamical Theory of LLM Self-Adversariality: Modeling Severity Drift as a Critical Process
- Authors: Jack David Carson,
- Abstract summary: This paper introduces a continuous-time dynamical framework for understanding how large language models (LLMs) may self-amplify latent biases or toxicity through their own chain-of-thought reasoning.
The model posits an instantaneous "severity" variable $x(t) in [0,1]$ evolving under a differential equation (SDE) with a drift term $mu(x)$ and diffusion $sigma(x)$.
- Score: 0.0
- License:
- Abstract: This paper introduces a continuous-time stochastic dynamical framework for understanding how large language models (LLMs) may self-amplify latent biases or toxicity through their own chain-of-thought reasoning. The model posits an instantaneous "severity" variable $x(t) \in [0,1]$ evolving under a stochastic differential equation (SDE) with a drift term $\mu(x)$ and diffusion $\sigma(x)$. Crucially, such a process can be consistently analyzed via the Fokker--Planck approach if each incremental step behaves nearly Markovian in severity space. The analysis investigates critical phenomena, showing that certain parameter regimes create phase transitions from subcritical (self-correcting) to supercritical (runaway severity). The paper derives stationary distributions, first-passage times to harmful thresholds, and scaling laws near critical points. Finally, it highlights implications for agents and extended LLM reasoning models: in principle, these equations might serve as a basis for formal verification of whether a model remains stable or propagates bias over repeated inferences.
Related papers
- Advancing Wasserstein Convergence Analysis of Score-Based Models: Insights from Discretization and Second-Order Acceleration [5.548787731232499]
We focus on the Wasserstein convergence analysis of score-based diffusion models.
We compare various discretization schemes, including Euler discretization, exponential midpoint and randomization methods.
We propose an accelerated sampler based on the local linearization method.
arXiv Detail & Related papers (2025-02-07T11:37:51Z) - Stochastic quantization and diffusion models [0.0]
This is a review of the possible connection between the quantization in physics and the diffusion models in machine learning.
For machine-learning applications, the denoising diffusion model has been established as a successful technique.
In this review, we focus on an SDE approach used in the score-based generative modeling.
arXiv Detail & Related papers (2024-11-18T05:47:41Z) - Non-asymptotic bounds for forward processes in denoising diffusions: Ornstein-Uhlenbeck is hard to beat [49.1574468325115]
This paper presents explicit non-asymptotic bounds on the forward diffusion error in total variation (TV)
We parametrise multi-modal data distributions in terms of the distance $R$ to their furthest modes and consider forward diffusions with additive and multiplicative noise.
arXiv Detail & Related papers (2024-08-25T10:28:31Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
This paper studies amortized sampling of the posterior over data, $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$, in a model that consists of a diffusion generative model prior $p(mathbfx)$ and a black-box constraint or function $r(mathbfx)$.
We prove the correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from
arXiv Detail & Related papers (2024-05-31T16:18:46Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - A Robustness Analysis of Blind Source Separation [91.3755431537592]
Blind source separation (BSS) aims to recover an unobserved signal from its mixture $X=f(S)$ under the condition that the transformation $f$ is invertible but unknown.
We present a general framework for analysing such violations and quantifying their impact on the blind recovery of $S$ from $X$.
We show that a generic BSS-solution in response to general deviations from its defining structural assumptions can be profitably analysed in the form of explicit continuity guarantees.
arXiv Detail & Related papers (2023-03-17T16:30:51Z) - Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers [90.45898746733397]
We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling.
We show that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current gradient.
arXiv Detail & Related papers (2023-03-06T18:59:19Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Stochastic Langevin Differential Inclusions with Applications to Machine Learning [5.274477003588407]
We show some foundational results regarding the flow and properties of Langevin-type Differential Inclusions.
In particular, we show strong existence of the solution, as well as an canonical- minimization of the free-energy functional.
arXiv Detail & Related papers (2022-06-23T08:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.