Data-Driven vs Traditional Approaches to Power Transformer's Top-Oil Temperature Estimation
- URL: http://arxiv.org/abs/2501.16831v1
- Date: Tue, 28 Jan 2025 10:21:49 GMT
- Title: Data-Driven vs Traditional Approaches to Power Transformer's Top-Oil Temperature Estimation
- Authors: Francis Tembo, Federica Bragone, Tor Laneryd, Matthieu Barreau, Kateryna Morozovska,
- Abstract summary: Monitoring the temperature of a power transformer is fundamental to ensure a long-term operational life.
Models presented in the IEC 60076-7 and IEEE standards, for example, monitor the temperature by calculating the top-oil and the hot-spot temperatures.
This paper focuses on finding an alternative method to predict the top-oil temperatures given previous measurements.
- Score: 0.0
- License:
- Abstract: Power transformers are subjected to electrical currents and temperature fluctuations that, if not properly controlled, can lead to major deterioration of their insulation system. Therefore, monitoring the temperature of a power transformer is fundamental to ensure a long-term operational life. Models presented in the IEC 60076-7 and IEEE standards, for example, monitor the temperature by calculating the top-oil and the hot-spot temperatures. However, these models are not very accurate and rely on the power transformers' properties. This paper focuses on finding an alternative method to predict the top-oil temperatures given previous measurements. Given the large quantities of data available, machine learning methods for time series forecasting are analyzed and compared to the real measurements and the corresponding prediction of the IEC standard. The methods tested are Artificial Neural Networks (ANNs), Time-series Dense Encoder (TiDE), and Temporal Convolutional Networks (TCN) using different combinations of historical measurements. Each of these methods outperformed the IEC 60076-7 model and they are extended to estimate the temperature rise over ambient. To enhance prediction reliability, we explore the application of quantile regression to construct prediction intervals for the expected top-oil temperature ranges. The best-performing model successfully estimates conditional quantiles that provide sufficient coverage.
Related papers
- Calibrating Language Models with Adaptive Temperature Scaling [58.056023173579625]
We introduce Adaptive Temperature Scaling (ATS), a post-hoc calibration method that predicts a temperature scaling parameter for each token prediction.
ATS improves calibration by over 10-50% across three downstream natural language evaluation benchmarks compared to prior calibration methods.
arXiv Detail & Related papers (2024-09-29T22:54:31Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
This study explores a hybrid CNN-LSTM model to enhance temperature forecasting accuracy for the Delhi region.
We employed both direct and indirect methods, including comprehensive data preprocessing and exploratory analysis, to construct and train our model.
Experimental results indicate that the CNN-LSTM model significantly outperforms traditional forecasting methods in terms of both accuracy and stability.
arXiv Detail & Related papers (2024-09-14T11:06:07Z) - Residual-based Attention Physics-informed Neural Networks for Spatio-Temporal Ageing Assessment of Transformers Operated in Renewable Power Plants [0.6223528900192875]
This article introduces a-temporal model for transformer winding temperature and ageing.
It uses physics-based partial differential equations with data-driven Neural Networks.
Results are validated with a distribution transformer operating on a floating photovoltaic power plant.
arXiv Detail & Related papers (2024-05-10T12:48:57Z) - Long Horizon Temperature Scaling [90.03310732189543]
Long Horizon Temperature Scaling (LHTS) is a novel approach for sampling from temperature-scaled joint distributions.
We derive a temperature-dependent LHTS objective, and show that finetuning a model on a range of temperatures produces a single model capable of generation with a controllable long horizon temperature parameter.
arXiv Detail & Related papers (2023-02-07T18:59:32Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Evaluating Short-Term Forecasting of Multiple Time Series in IoT
Environments [67.24598072875744]
Internet of Things (IoT) environments are monitored via a large number of IoT enabled sensing devices.
To alleviate this issue, sensors are often configured to operate at relatively low sampling frequencies.
This can hamper dramatically subsequent decision-making, such as forecasting.
arXiv Detail & Related papers (2022-06-15T19:46:59Z) - Principal Component Density Estimation for Scenario Generation Using
Normalizing Flows [62.997667081978825]
We propose a dimensionality-reducing flow layer based on the linear principal component analysis (PCA) that sets up the normalizing flow in a lower-dimensional space.
We train the resulting principal component flow (PCF) on data of PV and wind power generation as well as load demand in Germany in the years 2013 to 2015.
arXiv Detail & Related papers (2021-04-21T08:42:54Z) - Thermal Neural Networks: Lumped-Parameter Thermal Modeling With
State-Space Machine Learning [0.0]
Thermal models for electric power systems are required to be both, real-time capable and of high estimation accuracy.
In this work, the thermal neural network (TNN) is introduced, which unifies both, consolidated knowledge in the form of heat-transfer-based lumped- parameter models.
A TNN has physically interpretable states through its state-space representation, is end-to-end trainable, and requires no material, geometry, nor expert knowledge for its design.
arXiv Detail & Related papers (2021-03-30T13:15:48Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
We introduce a novel calibration method, Parametrized Temperature Scaling (PTS)
We demonstrate that the performance of accuracy-preserving state-of-the-art post-hoc calibrators is limited by their intrinsic expressive power.
We show with extensive experiments that our novel accuracy-preserving approach consistently outperforms existing algorithms across a large number of model architectures, datasets and metrics.
arXiv Detail & Related papers (2021-02-24T10:18:30Z) - A Transfer Learning-based State of Charge Estimation for Lithium-Ion
Battery at Varying Ambient Temperatures [14.419790834463548]
State of charge (SoC) estimation is important to provide a stable and efficient environment for Lithium-ion batteries (LiBs) powered devices.
Most data-driven SoC models are built for a fixed ambient temperature, which neglect the high sensitivity of LiBs to temperature and may cause severe prediction errors.
Our proposed method not only reduces prediction errors at fixed temperatures (e.g., reduced by 24.35% at -20degC, 49.82% at 25degC) but also improves prediction accuracies at new temperatures.
arXiv Detail & Related papers (2021-01-11T05:26:37Z) - Data-Driven Permanent Magnet Temperature Estimation in Synchronous
Motors with Supervised Machine Learning [0.0]
Monitoring the magnet temperature in permanent magnet synchronous motors (PMSMs) for automotive applications is a challenging task.
Overheating results in severe motor deterioration and is thus of high concern for the machine's control strategy and its design.
Several machine learning (ML) models are empirically evaluated on their estimation accuracy for the task of predicting latent high-dynamic magnet temperature profiles.
arXiv Detail & Related papers (2020-01-17T11:41:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.