論文の概要: Secure Federated Graph-Filtering for Recommender Systems
- arxiv url: http://arxiv.org/abs/2501.16888v1
- Date: Tue, 28 Jan 2025 12:18:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:40:43.831770
- Title: Secure Federated Graph-Filtering for Recommender Systems
- Title(参考訳): リコメンダシステムのためのセキュアフェデレーショングラフフィルタ
- Authors: Julien Nicolas, César Sabater, Mohamed Maouche, Sonia Ben Mokhtar, Mark Coates,
- Abstract要約: 本研究では、機密情報を集中化せずにクリティカルグラフコンポーネントをセキュアに計算するための2つの分散フレームワークを提案する。
最初のアプローチでは、軽量なマルチパーティ計算と分散特異ベクトル計算を活用して、キーグラフフィルタをプライベートに計算する。
2つ目は低ランク近似を組み込むことでこのフレームワークを拡張し、通信効率と予測性能のトレードオフを可能にする。
- 参考スコア(独自算出の注目度): 15.955127242261808
- License:
- Abstract: Recommender systems often rely on graph-based filters, such as normalized item-item adjacency matrices and low-pass filters. While effective, the centralized computation of these components raises concerns about privacy, security, and the ethical use of user data. This work proposes two decentralized frameworks for securely computing these critical graph components without centralizing sensitive information. The first approach leverages lightweight Multi-Party Computation and distributed singular vector computations to privately compute key graph filters. The second extends this framework by incorporating low-rank approximations, enabling a trade-off between communication efficiency and predictive performance. Empirical evaluations on benchmark datasets demonstrate that the proposed methods achieve comparable accuracy to centralized state-of-the-art systems while ensuring data confidentiality and maintaining low communication costs. Our results highlight the potential for privacy-preserving decentralized architectures to bridge the gap between utility and user data protection in modern recommender systems.
- Abstract(参考訳): レコメンダシステムは、正規化されたアイテムイテム隣接行列やローパスフィルタなど、グラフベースのフィルタに依存することが多い。
有効ではあるが、これらのコンポーネントの集中的な計算は、プライバシやセキュリティ、ユーザデータの倫理的利用に関する懸念を提起する。
本研究では、機密情報を集中化せずに、これらのクリティカルグラフコンポーネントをセキュアに計算するための2つの分散フレームワークを提案する。
最初のアプローチでは、軽量なマルチパーティ計算と分散特異ベクトル計算を活用して、キーグラフフィルタをプライベートに計算する。
2つ目は低ランク近似を組み込むことでこのフレームワークを拡張し、通信効率と予測性能のトレードオフを可能にする。
ベンチマークデータセットの実証評価により、提案手法は、データの機密性を確保し、通信コストを低く保ちながら、中央集権的な最先端システムに匹敵する精度を達成することが示された。
我々の結果は、現代のレコメンデータシステムにおけるユーティリティとユーザデータ保護のギャップを埋めるための、プライバシ保護の分散アーキテクチャの可能性を強調します。
関連論文リスト
- Retrieval Augmentation via User Interest Clustering [57.63883506013693]
インダストリアルレコメンデータシステムは、ユーザ・イテム・エンゲージメントのパターンに敏感である。
本稿では,ユーザの関心を効率的に構築し,計算コストの低減を図る新しい手法を提案する。
当社のアプローチはMetaの複数の製品に展開されており、ショートフォームビデオ関連の推奨を助長しています。
論文 参考訳(メタデータ) (2024-08-07T16:35:10Z) - Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
電力システムの負荷データは、住宅ユーザの日常のルーチンを不注意に明らかにし、彼らの財産のセキュリティにリスクを及ぼす可能性がある。
我々はマルコフスイッチ方式の分散学習フレームワークを導入し、その収束は厳密な理論的解析によって実証される。
実世界の電力系統負荷データを用いたケーススタディにより,提案アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2024-02-02T16:39:08Z) - Semi-decentralized Federated Ego Graph Learning for Recommendation [58.21409625065663]
デバイス上でのレコメンデーションのための半分散型フェデレーションエゴグラフ学習フレームワークであるSemiDFEGLを提案する。
提案するフレームワークはモデルに依存しないため、既存のグラフニューラルネットワークベースのレコメンデーションメソッドやプライバシ保護技術とシームレスに統合できる。
論文 参考訳(メタデータ) (2023-02-10T03:57:45Z) - Differentially Private Vertical Federated Clustering [13.27934054846057]
多くのアプリケーションでは、複数のパーティが同じユーザのセットに関するプライベートデータを持っているが、非結合な属性のセットについてである。
データ対象者のプライバシーを保護しながらモデル学習を可能にするためには、垂直連合学習(VFL)技術が必要である。
本論文で提案するアルゴリズムは, 個人用垂直結合型K平均クラスタリングのための最初の実用的な解法である。
論文 参考訳(メタデータ) (2022-08-02T19:23:48Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Communication-Computation Efficient Secure Aggregation for Federated
Learning [23.924656276456503]
フェデレーションラーニングは、ノードがデータを共有せずに、複数のノードに分散したデータを使用してニューラルネットワークを訓練する方法です。
セキュアアグリゲーションプリミティブに基づく最近のソリューションでは,プライバシ保護型のフェデレーション学習が可能だったが,通信/計算リソースが大幅に増加した。
通信・計算資源の量を大幅に削減する通信・計算効率のよいセキュアアグリゲーションを提案する。
論文 参考訳(メタデータ) (2020-12-10T03:17:50Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。