論文の概要: Agential AI for Integrated Continual Learning, Deliberative Behavior, and Comprehensible Models
- arxiv url: http://arxiv.org/abs/2501.16922v1
- Date: Tue, 28 Jan 2025 13:09:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:42:24.662050
- Title: Agential AI for Integrated Continual Learning, Deliberative Behavior, and Comprehensible Models
- Title(参考訳): 総合的学習・熟考行動・包括的モデルのためのエージェントAI
- Authors: Zeki Doruk Erden, Boi Faltings,
- Abstract要約: 本稿では,AIシステム,エージェントAI(AAI)の初期設計について述べる。
AAIのコアは、完全性、最小性、継続的な学習を保証する時間的ダイナミクスをモデル化する学習方法である。
簡易環境における予備実験は,AAIの有効性と可能性を示している。
- 参考スコア(独自算出の注目度): 15.376349115976534
- License:
- Abstract: Contemporary machine learning paradigm excels in statistical data analysis, solving problems that classical AI couldn't. However, it faces key limitations, such as a lack of integration with planning, incomprehensible internal structure, and inability to learn continually. We present the initial design for an AI system, Agential AI (AAI), in principle operating independently or on top of statistical methods, designed to overcome these issues. AAI's core is a learning method that models temporal dynamics with guarantees of completeness, minimality, and continual learning, using component-level variation and selection to learn the structure of the environment. It integrates this with a behavior algorithm that plans on a learned model and encapsulates high-level behavior patterns. Preliminary experiments on a simple environment show AAI's effectiveness and potential.
- Abstract(参考訳): 現代の機械学習パラダイムは、従来のAIではできなかった問題を解決する統計データ分析に優れています。
しかしながら、計画との統合の欠如、理解不能な内部構造、継続的な学習の不可能など、重要な制限に直面している。
本稿では,AIシステムであるAgential AI(AAI)の初期設計について述べる。
AAIのコアは、コンポーネントレベルの変動と選択を使用して、完全性、最小性、連続的な学習を保証し、時間的ダイナミクスをモデル化し、環境の構造を学習する学習方法である。
これを学習モデルに基づいて計画し、ハイレベルな行動パターンをカプセル化する行動アルゴリズムと統合する。
簡易環境における予備実験は,AAIの有効性と可能性を示している。
関連論文リスト
- Reinforcement Learning under Latent Dynamics: Toward Statistical and Algorithmic Modularity [51.40558987254471]
強化学習の現実的な応用は、エージェントが複雑な高次元の観察を行う環境を含むことが多い。
本稿では,統計的・アルゴリズム的な観点から,textit General$ latent dynamicsの下での強化学習の課題に対処する。
論文 参考訳(メタデータ) (2024-10-23T14:22:49Z) - Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution [38.53065398127086]
本研究では、回帰問題に対する入力データの非形式的特徴をフィルタリングする特徴属性法の可能性について検討する。
我々は、初期データ空間から最適な変数セットを選択するために、統合グラディエントとk平均クラスタリングを組み合わせた機能選択パイプラインを導入する。
提案手法の有効性を検証するため, ターボ機械の開発過程における羽根振動解析を実世界の産業問題に適用した。
論文 参考訳(メタデータ) (2024-09-25T09:50:51Z) - Engineered Ordinary Differential Equations as Classification Algorithm (EODECA): thorough characterization and testing [0.9786690381850358]
本稿では,機械学習と動的システム理論の交叉における新しいアプローチであるEODECAを提案する。
EODECAの設計には、安定したアトラクタをフェーズ空間に埋め込む機能が含まれており、信頼性を高め、可逆的なダイナミクスを可能にする。
我々は,MNISTデータセットとFashion MNISTデータセットに対するEODECAの有効性を実証し,それぞれ98.06%,88.21%の精度を達成した。
論文 参考訳(メタデータ) (2023-12-22T13:34:18Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
継続的な学習は、現実世界に強い適応性を持つ人工知能を強化することを目的としている。
既存の進歩は主に、破滅的な忘れを克服するために記憶安定性を維持することに焦点を当てている。
本稿では,学習の可塑性を改善するため,パラメータ分布の古い記憶を適切に減衰させる汎用的手法を提案する。
論文 参考訳(メタデータ) (2023-08-29T02:43:58Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
本研究では,連続学習のタスク非依存的な視点を取り入れ,階層的情報理論の最適性原理を考案する。
我々は,情報処理経路の集合を作成することで,忘れを緩和する,Mixture-of-Variational-Experts層と呼ばれるニューラルネットワーク層を提案する。
既存の連続学習アルゴリズムのようにタスク固有の知識を必要としない。
論文 参考訳(メタデータ) (2022-11-14T19:53:15Z) - Annealing Optimization for Progressive Learning with Stochastic
Approximation [0.0]
計算資源が限られているアプリケーションのニーズを満たすために設計された学習モデルを導入する。
我々は,オンラインな勾配近似アルゴリズムとして定式化されたオンラインプロトタイプベースの学習アルゴリズムを開発した。
学習モデルは、教師なし、教師なし、強化学習に使用される、解釈可能で、徐々に成長する競争的ニューラルネットワークモデルと見なすことができる。
論文 参考訳(メタデータ) (2022-09-06T21:31:01Z) - Latent Properties of Lifelong Learning Systems [59.50307752165016]
本稿では,生涯学習アルゴリズムの潜伏特性を推定するために,アルゴリズムに依存しないサロゲート・モデリング手法を提案する。
合成データを用いた実験により,これらの特性を推定するためのアプローチを検証する。
論文 参考訳(メタデータ) (2022-07-28T20:58:13Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
民主化された学習(Dem-AI)は、大規模な分散および民主化された機械学習システムを構築するための基本原則を備えた全体主義的哲学を定めている。
本稿では,Dem-AI哲学にヒントを得た分散学習手法を提案する。
提案アルゴリズムは,従来のFLアルゴリズムと比較して,エージェントにおける学習モデルの一般化性能が向上することを示す。
論文 参考訳(メタデータ) (2020-07-07T08:34:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。