Agential AI for Integrated Continual Learning, Deliberative Behavior, and Comprehensible Models
- URL: http://arxiv.org/abs/2501.16922v1
- Date: Tue, 28 Jan 2025 13:09:08 GMT
- Title: Agential AI for Integrated Continual Learning, Deliberative Behavior, and Comprehensible Models
- Authors: Zeki Doruk Erden, Boi Faltings,
- Abstract summary: We present the initial design for an AI system, Agential AI (AAI)
AAI's core is a learning method that models temporal dynamics with guarantees of completeness, minimality, and continual learning.
Preliminary experiments on a simple environment show AAI's effectiveness and potential.
- Score: 15.376349115976534
- License:
- Abstract: Contemporary machine learning paradigm excels in statistical data analysis, solving problems that classical AI couldn't. However, it faces key limitations, such as a lack of integration with planning, incomprehensible internal structure, and inability to learn continually. We present the initial design for an AI system, Agential AI (AAI), in principle operating independently or on top of statistical methods, designed to overcome these issues. AAI's core is a learning method that models temporal dynamics with guarantees of completeness, minimality, and continual learning, using component-level variation and selection to learn the structure of the environment. It integrates this with a behavior algorithm that plans on a learned model and encapsulates high-level behavior patterns. Preliminary experiments on a simple environment show AAI's effectiveness and potential.
Related papers
- Reinforcement Learning under Latent Dynamics: Toward Statistical and Algorithmic Modularity [51.40558987254471]
Real-world applications of reinforcement learning often involve environments where agents operate on complex, high-dimensional observations.
This paper addresses the question of reinforcement learning under $textitgeneral$ latent dynamics from a statistical and algorithmic perspective.
arXiv Detail & Related papers (2024-10-23T14:22:49Z) - Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution [38.53065398127086]
This study investigates the potential of feature attribution methods to filter out uninformative features in input data for regression problems.
We introduce a feature selection pipeline that combines Integrated Gradients with k-means clustering to select an optimal set of variables from the initial data space.
To validate the effectiveness of this approach, we apply it to a real-world industrial problem - blade vibration analysis in the development process of turbo machinery.
arXiv Detail & Related papers (2024-09-25T09:50:51Z) - Unifying Self-Supervised Clustering and Energy-Based Models [9.3176264568834]
We establish a principled connection between self-supervised learning and generative models.
We show that our solution can be integrated into a neuro-symbolic framework to tackle a simple yet non-trivial instantiation of the symbol grounding problem.
arXiv Detail & Related papers (2023-12-30T04:46:16Z) - Engineered Ordinary Differential Equations as Classification Algorithm (EODECA): thorough characterization and testing [0.9786690381850358]
We present EODECA, a novel approach at the intersection of machine learning and dynamical systems theory.
EODECA's design incorporates the ability to embed stable attractors in the phase space, enhancing reliability and allowing for reversible dynamics.
We demonstrate EODECA's effectiveness on the MNIST and Fashion MNIST datasets, achieving impressive accuracies of $98.06%$ and $88.21%$, respectively.
arXiv Detail & Related papers (2023-12-22T13:34:18Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
Continual learning aims to empower artificial intelligence with strong adaptability to the real world.
Existing advances mainly focus on preserving memory stability to overcome catastrophic forgetting.
We propose a generic approach that appropriately attenuates old memories in parameter distributions to improve learning plasticity.
arXiv Detail & Related papers (2023-08-29T02:43:58Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
We take a task-agnostic view of continual learning and develop a hierarchical information-theoretic optimality principle.
We propose a neural network layer, called the Mixture-of-Variational-Experts layer, that alleviates forgetting by creating a set of information processing paths.
Our approach can operate in a task-agnostic way, i.e., it does not require task-specific knowledge, as is the case with many existing continual learning algorithms.
arXiv Detail & Related papers (2022-11-14T19:53:15Z) - Annealing Optimization for Progressive Learning with Stochastic
Approximation [0.0]
We introduce a learning model designed to meet the needs of applications in which computational resources are limited.
We develop an online prototype-based learning algorithm that is formulated as an online-free gradient approximation algorithm.
The learning model can be viewed as an interpretable and progressively growing competitive neural network model to be used for supervised, unsupervised, and reinforcement learning.
arXiv Detail & Related papers (2022-09-06T21:31:01Z) - Latent Properties of Lifelong Learning Systems [59.50307752165016]
We introduce an algorithm-agnostic explainable surrogate-modeling approach to estimate latent properties of lifelong learning algorithms.
We validate the approach for estimating these properties via experiments on synthetic data.
arXiv Detail & Related papers (2022-07-28T20:58:13Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
democratized learning (Dem-AI) lays out a holistic philosophy with underlying principles for building large-scale distributed and democratized machine learning systems.
Inspired by Dem-AI philosophy, a novel distributed learning approach is proposed in this paper.
The proposed algorithms demonstrate better results in the generalization performance of learning models in agents compared to the conventional FL algorithms.
arXiv Detail & Related papers (2020-07-07T08:34:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.