Engineered Ordinary Differential Equations as Classification Algorithm (EODECA): thorough characterization and testing
- URL: http://arxiv.org/abs/2312.14681v2
- Date: Mon, 20 May 2024 11:58:24 GMT
- Title: Engineered Ordinary Differential Equations as Classification Algorithm (EODECA): thorough characterization and testing
- Authors: Raffaele Marino, Lorenzo Buffoni, Lorenzo Chicchi, Lorenzo Giambagli, Duccio Fanelli,
- Abstract summary: We present EODECA, a novel approach at the intersection of machine learning and dynamical systems theory.
EODECA's design incorporates the ability to embed stable attractors in the phase space, enhancing reliability and allowing for reversible dynamics.
We demonstrate EODECA's effectiveness on the MNIST and Fashion MNIST datasets, achieving impressive accuracies of $98.06%$ and $88.21%$, respectively.
- Score: 0.9786690381850358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: EODECA (Engineered Ordinary Differential Equations as Classification Algorithm) is a novel approach at the intersection of machine learning and dynamical systems theory, presenting a unique framework for classification tasks [1]. This method stands out with its dynamical system structure, utilizing ordinary differential equations (ODEs) to efficiently handle complex classification challenges. The paper delves into EODECA's dynamical properties, emphasizing its resilience against random perturbations and robust performance across various classification scenarios. Notably, EODECA's design incorporates the ability to embed stable attractors in the phase space, enhancing reliability and allowing for reversible dynamics. In this paper, we carry out a comprehensive analysis by expanding on the work [1], and employing a Euler discretization scheme. In particular, we evaluate EODECA's performance across five distinct classification problems, examining its adaptability and efficiency. Significantly, we demonstrate EODECA's effectiveness on the MNIST and Fashion MNIST datasets, achieving impressive accuracies of $98.06\%$ and $88.21\%$, respectively. These results are comparable to those of a multi-layer perceptron (MLP), underscoring EODECA's potential in complex data processing tasks. We further explore the model's learning journey, assessing its evolution in both pre and post training environments and highlighting its ability to navigate towards stable attractors. The study also investigates the invertibility of EODECA, shedding light on its decision-making processes and internal workings. This paper presents a significant step towards a more transparent and robust machine learning paradigm, bridging the gap between machine learning algorithms and dynamical systems methodologies.
Related papers
- AI-Aided Kalman Filters [65.35350122917914]
The Kalman filter (KF) and its variants are among the most celebrated algorithms in signal processing.
Recent developments illustrate the possibility of fusing deep neural networks (DNNs) with classic Kalman-type filtering.
This article provides a tutorial-style overview of design approaches for incorporating AI in aiding KF-type algorithms.
arXiv Detail & Related papers (2024-10-16T06:47:53Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - A Competitive Learning Approach for Specialized Models: A Solution for
Complex Physical Systems with Distinct Functional Regimes [0.0]
We propose a novel competitive learning approach for obtaining data-driven models of physical systems.
The primary idea behind the proposed approach is to employ dynamic loss functions for a set of models that are trained concurrently on the data.
arXiv Detail & Related papers (2023-07-19T23:29:40Z) - Learning invariant representations of time-homogeneous stochastic dynamical systems [27.127773672738535]
We study the problem of learning a representation of the state that faithfully captures its dynamics.
This is instrumental to learning the transfer operator or the generator of the system.
We show that the search for a good representation can be cast as an optimization problem over neural networks.
arXiv Detail & Related papers (2023-07-19T11:32:24Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Personalized Algorithm Generation: A Case Study in Meta-Learning ODE
Integrators [6.457555233038933]
We study the meta-learning of numerical algorithms for scientific computing.
We develop a machine learning approach that automatically learns solvers for initial value problems.
arXiv Detail & Related papers (2021-05-04T05:42:33Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.