Image-based Geo-localization for Robotics: Are Black-box Vision-Language Models there yet?
- URL: http://arxiv.org/abs/2501.16947v1
- Date: Tue, 28 Jan 2025 13:46:01 GMT
- Title: Image-based Geo-localization for Robotics: Are Black-box Vision-Language Models there yet?
- Authors: Sania Waheed, Bruno Ferrarini, Michael Milford, Sarvapali D. Ramchurn, Shoaib Ehsan,
- Abstract summary: Vision-Language models (VLMs) offer exciting opportunities for robotic applications involving image geo-localization.
Recent research works have focused on using a VLM as embeddings extractor for geo-localization.
This paper investigates the potential of some of the state-of-the-art VLMs as stand-alone, zero-shot geo-localization systems.
- Score: 25.419763184667985
- License:
- Abstract: The advances in Vision-Language models (VLMs) offer exciting opportunities for robotic applications involving image geo-localization, the problem of identifying the geo-coordinates of a place based on visual data only. Recent research works have focused on using a VLM as embeddings extractor for geo-localization, however, the most sophisticated VLMs may only be available as black boxes that are accessible through an API, and come with a number of limitations: there is no access to training data, model features and gradients; retraining is not possible; the number of predictions may be limited by the API; training on model outputs is often prohibited; and queries are open-ended. The utilization of a VLM as a stand-alone, zero-shot geo-localization system using a single text-based prompt is largely unexplored. To bridge this gap, this paper undertakes the first systematic study, to the best of our knowledge, to investigate the potential of some of the state-of-the-art VLMs as stand-alone, zero-shot geo-localization systems in a black-box setting with realistic constraints. We consider three main scenarios for this thorough investigation: a) fixed text-based prompt; b) semantically-equivalent text-based prompts; and c) semantically-equivalent query images. We also take into account the auto-regressive and probabilistic generation process of the VLMs when investigating their utility for geo-localization task by using model consistency as a metric in addition to traditional accuracy. Our work provides new insights in the capabilities of different VLMs for the above-mentioned scenarios.
Related papers
- GEOBench-VLM: Benchmarking Vision-Language Models for Geospatial Tasks [84.86699025256705]
We present GEOBench-VLM, a benchmark specifically designed to evaluate Vision-Language Models (VLMs) on geospatial tasks.
Our benchmark features over 10,000 manually verified instructions and covers a diverse set of variations in visual conditions, object type, and scale.
We evaluate several state-of-the-art VLMs to assess their accuracy within the geospatial context.
arXiv Detail & Related papers (2024-11-28T18:59:56Z) - Teaching VLMs to Localize Specific Objects from In-context Examples [56.797110842152]
Vision-Language Models (VLMs) have shown remarkable capabilities across diverse visual tasks.
Current VLMs lack a fundamental cognitive ability: learning to localize objects in a scene by taking into account the context.
This work is the first to explore and benchmark personalized few-shot localization for VLMs.
arXiv Detail & Related papers (2024-11-20T13:34:22Z) - Membership Inference Attacks against Large Vision-Language Models [40.996912464828696]
Large vision-language models (VLLMs) exhibit promising capabilities for processing multi-modal tasks across various application scenarios.
Their emergence also raises significant data security concerns, given the potential inclusion of sensitive information, such as private photos and medical records.
Detecting inappropriately used data in VLLMs remains a critical and unresolved issue.
arXiv Detail & Related papers (2024-11-05T08:35:08Z) - MC-Bench: A Benchmark for Multi-Context Visual Grounding in the Era of MLLMs [61.56904387052982]
This paper proposes a new visual grounding task called multi-context visual grounding.
It aims to localize instances of interest across multiple images based on open-ended text prompts.
We benchmark over 20 state-of-the-art MLLMs and foundation models with potential multi-context visual grounding capabilities.
arXiv Detail & Related papers (2024-10-16T07:52:57Z) - Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
We introduce smileGeo, a novel visual geo-localization framework.
By inter-agent communication, smileGeo integrates the inherent knowledge of these agents with additional retrieved information.
Results show that our approach significantly outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2024-08-21T03:31:30Z) - Simultaneous Localization and Affordance Prediction for Tasks in Egocentric Video [18.14234312389889]
We present a system which trains on spatially-localized egocentric videos in order to connect visual input and task descriptions.
We show our approach outperforms the baseline of using a VLM to map similarity of a task's description over a set of location-tagged images.
The resulting system enables robots to use egocentric sensing to navigate to physical locations of novel tasks specified in natural language.
arXiv Detail & Related papers (2024-07-18T18:55:56Z) - PIN: Positional Insert Unlocks Object Localisation Abilities in VLMs [55.8550939439138]
Vision-Language Models (VLMs) have shown immense potential by integrating large language models with vision systems.
These models face challenges in the fundamental computer vision task of object localisation, due to their training on multimodal data containing mostly captions.
We introduce an input-agnostic Positional Insert (PIN), a learnable spatial prompt, containing a minimal set of parameters that are slid inside the frozen VLM.
Our PIN module is trained with a simple next-token prediction task on synthetic data without requiring the introduction of new output heads.
arXiv Detail & Related papers (2024-02-13T18:39:18Z) - Localized Symbolic Knowledge Distillation for Visual Commonsense Models [150.18129140140238]
We build Localized Visual Commonsense models, which allow users to specify (multiple) regions as input.
We train our model by sampling localized commonsense knowledge from a large language model.
We find that training on the localized commonsense corpus can successfully distill existing vision-language models to support a reference-as-input interface.
arXiv Detail & Related papers (2023-12-08T05:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.