論文の概要: Generative quantum combinatorial optimization by means of a novel conditional generative quantum eigensolver
- arxiv url: http://arxiv.org/abs/2501.16986v1
- Date: Tue, 28 Jan 2025 14:35:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:43:05.506450
- Title: Generative quantum combinatorial optimization by means of a novel conditional generative quantum eigensolver
- Title(参考訳): 新しい条件付き生成量子固有解法による生成量子組合せ最適化
- Authors: Shunya Minami, Kouhei Nakaji, Yohichi Suzuki, Alán Aspuru-Guzik, Tadashi Kadowaki,
- Abstract要約: 本稿では,エンコーダ・デコーダ変換を用いたコンテクスト対応量子回路生成装置である条件付き生成量子固有解器(条件付きGQE)を紹介する。
最大10キュービットの問題を解決するためにジェネレータをトレーニングし、新しい問題に対するほぼ完璧なパフォーマンスを示します。
- 参考スコア(独自算出の注目度): 1.4769913341588448
- License:
- Abstract: Quantum computing is entering a transformative phase with the emergence of logical quantum processors, which hold the potential to tackle complex problems beyond classical capabilities. While significant progress has been made, applying quantum algorithms to real-world problems remains challenging. Hybrid quantum-classical techniques have been explored to bridge this gap, but they often face limitations in expressiveness, trainability, or scalability. In this work, we introduce conditional Generative Quantum Eigensolver (conditional-GQE), a context-aware quantum circuit generator powered by an encoder-decoder Transformer. Focusing on combinatorial optimization, we train our generator for solving problems with up to 10 qubits, exhibiting nearly perfect performance on new problems. By leveraging the high expressiveness and flexibility of classical generative models, along with an efficient preference-based training scheme, conditional-GQE provides a generalizable and scalable framework for quantum circuit generation. Our approach advances hybrid quantum-classical computing and contributes to accelerate the transition toward fault-tolerant quantum computing.
- Abstract(参考訳): 量子コンピューティングは、古典的な能力を超えた複雑な問題に取り組む可能性を秘めている論理量子プロセッサの出現とともに、変革の段階に入った。
しかし、量子アルゴリズムを現実世界の問題に適用することは依然として困難である。
ハイブリッド量子古典技術はこのギャップを埋めるために研究されてきたが、表現性、訓練性、スケーラビリティの制限に直面していることが多い。
本研究では,エンコーダ・デコーダ変換を用いたコンテクスト対応量子回路生成装置である条件付き生成量子固有解器(条件付きGQE)を紹介する。
組合せ最適化に焦点をあてて、最大10キュービットの問題を解決するためにジェネレータを訓練し、新しい問題に対してほぼ完璧な性能を示す。
古典的生成モデルの高表現性と柔軟性を活用することにより、条件付きGQEは量子回路生成のための一般化可能でスケーラブルなフレームワークを提供する。
提案手法は, 量子古典計算のハイブリッド化を推し進め, フォールトトレラント量子コンピューティングへの移行の加速に寄与する。
関連論文リスト
- LatentQGAN: A Hybrid QGAN with Classical Convolutional Autoencoder [7.945302052915863]
量子機械学習の潜在的な応用は、古典的なデータを生成するために量子コンピュータのパワーを利用することである。
本稿では,自己エンコーダと結合したハイブリッド量子古典的GANを用いた新しい量子モデルであるLatntQGANを提案する。
論文 参考訳(メタデータ) (2024-09-22T23:18:06Z) - Universal quantum computation using quantum annealing with the
transverse-field Ising Hamiltonian [0.0]
逆場イジング・ハミルトニアンを用いた普遍量子計算の実践的実装法を提案する。
我々の提案はD-Waveデバイスと互換性があり、大規模ゲートベースの量子コンピュータの実現の可能性を広げている。
論文 参考訳(メタデータ) (2024-02-29T12:47:29Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Formulation of the Electric Vehicle Charging and Routing Problem for a
Hybrid Quantum-Classical Search Space Reduction Heuristic [0.0]
制約付き量子最適化アルゴリズムの構築において、量子情報の多レベルキャリア -- 量子ビット -- をどのように活用するかを示す。
本稿では,制約付き解をサンプリングし,探索空間を大幅に削減するハイブリッド古典量子戦略を提案する。
論文 参考訳(メタデータ) (2023-06-07T13:16:15Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
各量子状態に対するゲートの作用を特徴付ける新しい量子ゲート距離を提案する。
提案手法は、経験的量子機械学習の3つの問題において、ベンチマークを著しく上回っている。
論文 参考訳(メタデータ) (2022-06-28T16:23:24Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。