論文の概要: Enhancing variational quantum algorithms by balancing training on classical and quantum hardware
- arxiv url: http://arxiv.org/abs/2503.16361v1
- Date: Thu, 20 Mar 2025 17:17:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:35:15.078203
- Title: Enhancing variational quantum algorithms by balancing training on classical and quantum hardware
- Title(参考訳): 古典的および量子的ハードウェアのトレーニングバランスによる変分量子アルゴリズムの強化
- Authors: Rahul Bhowmick, Harsh Wadhwa, Avinash Singh, Tania Sidana, Quoc Hoan Tran, Krishna Kumar Sabapathy,
- Abstract要約: 変分量子アルゴリズム(VQA)は、量子ユーティリティや利点への短期的なルートを提供する可能性がある。
VQAは、基底状態推定のような様々なタスクに対して提案されている。
量子ハードウェアのトレーサビリティとリソースコストには、依然として大きな課題がある。
- 参考スコア(独自算出の注目度): 1.8377902806196762
- License:
- Abstract: Quantum computers offer a promising route to tackling problems that are classically intractable such as in prime-factorization, solving large-scale linear algebra and simulating complex quantum systems, but require fault-tolerant quantum hardware. On the other hand, variational quantum algorithms (VQAs) have the potential to provide a near-term route to quantum utility or advantage, and is usually constructed by using parametrized quantum circuits (PQCs) in combination with a classical optimizer for training. Although VQAs have been proposed for a multitude of tasks such as ground-state estimation, combinatorial optimization and unitary compilation, there remain major challenges in its trainability and resource costs on quantum hardware. Here we address these challenges by adopting Hardware Efficient and dynamical LIe algebra Supported Ansatz (HELIA), and propose two training schemes that combine an existing g-sim method (that uses the underlying group structure of the operators) and the Parameter-Shift Rule (PSR). Our improvement comes from distributing the resources required for gradient estimation and training to both classical and quantum hardware. We numerically test our proposal for ground-state estimation using Variational Quantum Eigensolver (VQE) and classification of quantum phases using quantum neural networks. Our methods show better accuracy and success of trials, and also need fewer calls to the quantum hardware on an average than using only PSR (upto 60% reduction), that runs exclusively on quantum hardware. We also numerically demonstrate the capability of HELIA in mitigating barren plateaus, paving the way for training large-scale quantum models.
- Abstract(参考訳): 量子コンピュータは、素数分解、大規模線形代数の解法、複雑な量子システムをシミュレートするなど、古典的に難解な問題に取り組むための有望な経路を提供するが、フォールトトレラントな量子ハードウェアを必要とする。
一方、変分量子アルゴリズム(VQA)は、量子ユーティリティや利点への短期的な経路を提供する可能性があり、通常、パラメタライズド量子回路(PQC)と古典的なオプティマイザを組み合わせて構成される。
VQAは、基底状態推定、組合せ最適化、ユニタリコンパイルといった様々なタスクのために提案されているが、量子ハードウェアのトレーニング容易性やリソースコストに大きな課題がある。
本稿では、ハードウェア効率および動的LIe代数(HELIA)を採用することでこれらの課題に対処し、既存のg-sim法(演算子の基本群構造を用いる)とパラメータシフト規則(PSR)を組み合わせた2つのトレーニングスキームを提案する。
我々の改善は、勾配推定とトレーニングに必要なリソースを古典的および量子的ハードウェアの両方に分散することによる。
本稿では,変分量子固有解法(VQE)を用いた基底状態推定の提案と,量子ニューラルネットワークを用いた量子位相の分類を数値的に検証する。
提案手法は試行錯誤の精度が向上し, 量子ハードウェアのみで動作するPSR(最大60%の削減)よりも, 平均して量子ハードウェアへのコールが少なくなる。
また,大規模量子モデルの学習方法として,バレン高原の緩和におけるHELIAの能力を数値的に示す。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum Computing for Solid Mechanics and Structural Engineering -- a
Demonstration with Variational Quantum Eigensolver [3.8061090528695534]
変分量子アルゴリズムは、コスト関数を効率的に最適化するために重ね合わせと絡み合いの特徴を利用する。
我々は,IBM Qiskit プラットフォーム上で 5-qubit および 7-qubit 量子プロセッサ上での数値処理を実装し,実演する。
論文 参考訳(メタデータ) (2023-08-28T17:52:47Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
そのような短期量子アプリケーションを確立するための主要なパラダイムは、変分量子アルゴリズム(VQA)である。
このようなランダム回路の幅広いクラスにおいて、コスト関数の変動範囲は、高い確率で量子ビット数で指数関数的に消えることを示す。
この結果は、勾配に基づく最適化と勾配のない最適化の制約を自然に統一し、VQAのトレーニングランドスケープに余分な厳しい制約を明らかにすることができる。
論文 参考訳(メタデータ) (2022-05-10T17:14:57Z) - VQE Method: A Short Survey and Recent Developments [5.9640499950316945]
変分量子固有解法(VQE)は、ハミルトニアンの固有値と固有値を見つけるためにハイブリッド量子古典計算法を用いる方法である。
VQEは、様々な小さな分子に対する電子的シュリンガー方程式の解法に成功している。
現代の量子コンピュータは、現在利用可能なアンサツェを用いて生成されたディープ量子回路を実行することができない。
論文 参考訳(メタデータ) (2021-03-15T16:25:36Z) - Variational Quantum Algorithms [1.9486734911696273]
量子コンピュータは、大規模量子システムや大規模線形代数問題を解くなどの応用を解くことを約束する。
現在利用可能な量子デバイスには、量子ビット数の制限や回路深さを制限するノイズプロセスなど、深刻な制約がある。
パラメトリズド量子回路のトレーニングに古典的シミュレーションを用いる変分量子アルゴリズム(vqas)は、これらの制約に対処するための主要な戦略として登場した。
論文 参考訳(メタデータ) (2020-12-16T21:00:46Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。