論文の概要: Why is the estimation of metaorder impact with public market data so challenging?
- arxiv url: http://arxiv.org/abs/2501.17096v1
- Date: Tue, 28 Jan 2025 17:29:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:40:30.171130
- Title: Why is the estimation of metaorder impact with public market data so challenging?
- Title(参考訳): 公開市場データによるメタオーダーの影響の予測がなぜ難しいのか?
- Authors: Manuel Naviglio, Giacomo Bormetti, Francesco Campigli, German Rodikov, Fabrizio Lillo,
- Abstract要約: 公開市場データに基づく価格と取引のモデルを使用することで、実際のメタオーダー実行中に観測されるものと質的に異なる平均価格トラジェクトリが提供される。
メタオーダートレーディングのごく一部だけが市場の注文フローを引き起こすと仮定して,より現実的な軌道を提供する改良されたトランジェント・インパクト・モデルを提案する。
- 参考スコア(独自算出の注目度): 0.6990493129893112
- License:
- Abstract: Estimating market impact and transaction costs of large trades (metaorders) is a very important topic in finance. However, using models of price and trade based on public market data provide average price trajectories which are qualitatively different from what is observed during real metaorder executions: the price increases linearly, rather than in a concave way, during the execution and the amount of reversion after its end is very limited. We claim that this is a generic phenomenon due to the fact that even sophisticated statistical models are unable to correctly describe the origin of the autocorrelation of the order flow. We propose a modified Transient Impact Model which provides more realistic trajectories by assuming that only a fraction of the metaorder trading triggers market order flow. Interestingly, in our model there is a critical condition on the kernels of the price and order flow equations in which market impact becomes permanent.
- Abstract(参考訳): 大規模貿易(メートル法)の市場影響と取引コストの推定は、金融において非常に重要なトピックである。
しかし、公開市場データに基づく価格と取引のモデルを用いることで、実際のメタオーダー実行中に観測されたものと質的に異なる平均価格軌跡が提供される。
これは、洗練された統計モデルでさえ、順序流の自己相関の起源を正しく記述できないという事実から、一般的な現象であると主張する。
メタオーダートレーディングのごく一部だけが市場の注文フローを引き起こすと仮定して,より現実的な軌道を提供する改良されたトランジェント・インパクト・モデルを提案する。
興味深いことに、我々のモデルでは、市場への影響が恒久的になる価格と秩序流方程式の核に臨界条件が存在する。
関連論文リスト
- Causal Forecasting for Pricing [7.077353694086149]
本稿では,価格の文脈で需要予測を行う新しい手法を提案する。
我々の手法は、因果推論のためのダブル機械学習手法と、最先端のトランスフォーマーに基づく予測モデルを組み合わせたものである。
論文 参考訳(メタデータ) (2023-12-23T15:38:22Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Simulation-based Forecasting for Intraday Power Markets: Modelling
Fundamental Drivers for Location, Shape and Scale of the Price Distribution [0.0]
本研究では,日内市場におけるリターン分布の位置,形状,スケールパラメータのモデル化手法を提案する。
風と太陽の予測と、その日内更新、停電、価格情報、および、メリットの順序を形作るための新しい尺度について検討する。
ボラティリティは、利益秩序体制、納期、国境を越えた注文書の閉鎖によってもたらされる。
論文 参考訳(メタデータ) (2022-11-23T15:08:50Z) - Quantum computational finance: martingale asset pricing for incomplete
markets [69.73491758935712]
金融の価格問題に様々な量子技術を適用することができることを示す。
従来の研究と異なる3つの方法について議論する。
論文 参考訳(メタデータ) (2022-09-19T09:22:01Z) - Multivariate Probabilistic Forecasting of Intraday Electricity Prices
using Normalizing Flows [62.997667081978825]
ドイツでは、日内電気価格は通常、EPEXスポット市場の1日当たりの価格に異なる時間帯で変動する。
本研究は,日頭契約の日内価格差をモデル化する確率論的モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-05-27T08:38:20Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Deep Hedging: Learning Risk-Neutral Implied Volatility Dynamics [0.0]
シミュレーションスポットとオプション価格の経路に対するリスクニュートラル測度学習のための数値的効率的アプローチ
市場ダイナミクスは、リスク中立的措置に従う場合に限り、取引コストがなければ「統計的な仲裁」ができないことを示している。
論文 参考訳(メタデータ) (2021-03-22T15:38:25Z) - Empirical Study of Market Impact Conditional on Order-Flow Imbalance [0.0]
署名された注文フローに対して,注文フローの不均衡の増加に伴い,価格への影響は線形に増大することを示す。
さらに,注文フローにサインされた市場への影響を予測するために,機械学習アルゴリズムを実装した。
この結果から,機械学習モデルを用いて財務変数を推定できることが示唆された。
論文 参考訳(メタデータ) (2020-04-17T14:58:29Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
再生可能エネルギー源統合の成功の鍵となる要素は、エネルギー貯蔵の利用である。
欧州の継続的な日内市場におけるエネルギー貯蔵の戦略的関与をモデル化するための新しい枠組みを提案する。
本アルゴリズムの分散バージョンは, サンプル効率のため, この問題を解決するために選択される。
その結果, エージェントは, ベンチマーク戦略よりも平均的収益率の高い政策に収束することが示唆された。
論文 参考訳(メタデータ) (2020-04-13T13:50:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。