Histoires Morales: A French Dataset for Assessing Moral Alignment
- URL: http://arxiv.org/abs/2501.17117v1
- Date: Tue, 28 Jan 2025 18:07:30 GMT
- Title: Histoires Morales: A French Dataset for Assessing Moral Alignment
- Authors: Thibaud Leteno, Irina Proskurina, Antoine Gourru, Julien Velcin, Charlotte Laclau, Guillaume Metzler, Christophe Gravier,
- Abstract summary: Histoires Morales is a French dataset derived from Moral Stories.
We rely on annotations of the moral values within the dataset to ensure their alignment with French norms.
We find that while LLMs are generally aligned with human moral norms by default, they can be easily influenced with user-preference optimization for both moral and immoral data.
- Score: 6.521941403514571
- License:
- Abstract: Aligning language models with human values is crucial, especially as they become more integrated into everyday life. While models are often adapted to user preferences, it is equally important to ensure they align with moral norms and behaviours in real-world social situations. Despite significant progress in languages like English and Chinese, French has seen little attention in this area, leaving a gap in understanding how LLMs handle moral reasoning in this language. To address this gap, we introduce Histoires Morales, a French dataset derived from Moral Stories, created through translation and subsequently refined with the assistance of native speakers to guarantee grammatical accuracy and adaptation to the French cultural context. We also rely on annotations of the moral values within the dataset to ensure their alignment with French norms. Histoires Morales covers a wide range of social situations, including differences in tipping practices, expressions of honesty in relationships, and responsibilities toward animals. To foster future research, we also conduct preliminary experiments on the alignment of multilingual models on French and English data and the robustness of the alignment. We find that while LLMs are generally aligned with human moral norms by default, they can be easily influenced with user-preference optimization for both moral and immoral data.
Related papers
- Whose Morality Do They Speak? Unraveling Cultural Bias in Multilingual Language Models [0.0]
Large language models (LLMs) have become integral tools in diverse domains, yet their moral reasoning capabilities remain underexplored.
This study investigates whether multilingual LLMs, such as GPT-3.5-Turbo, reflect culturally specific moral values or impose dominant moral norms.
Using the updated Moral Foundations Questionnaire (MFQ-2) in eight languages, the study analyzes the models' adherence to six core moral foundations.
arXiv Detail & Related papers (2024-12-25T10:17:15Z) - The Moral Foundations Weibo Corpus [0.0]
Moral sentiments influence both online and offline environments, shaping behavioral styles and interaction patterns.
Existing corpora, while valuable, often face linguistic limitations.
This corpus consists of 25,671 Chinese comments on Weibo, encompassing six diverse topic areas.
arXiv Detail & Related papers (2024-11-14T17:32:03Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.
This paper shows that the ideological stance of an LLM appears to reflect the worldview of its creators.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - Decoding Multilingual Moral Preferences: Unveiling LLM's Biases Through the Moral Machine Experiment [11.82100047858478]
This paper builds on the moral machine experiment (MME) to investigate the moral preferences of five large language models in a multilingual setting.
We generate 6500 scenarios of the MME and prompt the models in ten languages on which action to take.
Our analysis reveals that all LLMs inhibit different moral biases to some degree and that they not only differ from the human preferences but also across multiple languages within the models themselves.
arXiv Detail & Related papers (2024-07-21T14:48:13Z) - Language Model Alignment in Multilingual Trolley Problems [138.5684081822807]
Building on the Moral Machine experiment, we develop a cross-lingual corpus of moral dilemma vignettes in over 100 languages called MultiTP.
Our analysis explores the alignment of 19 different LLMs with human judgments, capturing preferences across six moral dimensions.
We discover significant variance in alignment across languages, challenging the assumption of uniform moral reasoning in AI systems.
arXiv Detail & Related papers (2024-07-02T14:02:53Z) - CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models [59.22460740026037]
"CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset is designed to evaluate the social and cultural variation of Large Language Models (LLMs)
We create a hand-crafted, multilingual dataset of value-laden prompts which address specific socially sensitive topics, including LGBTQI rights, social welfare, immigration, disability rights, and surrogacy.
arXiv Detail & Related papers (2024-05-22T20:19:10Z) - MoralBERT: A Fine-Tuned Language Model for Capturing Moral Values in Social Discussions [4.747987317906765]
Moral values play a fundamental role in how we evaluate information, make decisions, and form judgements around important social issues.
Recent advances in Natural Language Processing (NLP) show that moral values can be gauged in human-generated textual content.
This paper introduces MoralBERT, a range of language representation models fine-tuned to capture moral sentiment in social discourse.
arXiv Detail & Related papers (2024-03-12T14:12:59Z) - Knowledge of cultural moral norms in large language models [3.475552182166427]
We investigate the extent to which monolingual English language models contain knowledge about moral norms in different countries.
We perform our analyses with two public datasets from the World Values Survey and PEW global surveys on morality.
We find that pre-trained English language models predict empirical moral norms across countries worse than the English moral norms reported previously.
arXiv Detail & Related papers (2023-06-02T18:23:35Z) - Speaking Multiple Languages Affects the Moral Bias of Language Models [70.94372902010232]
Pre-trained multilingual language models (PMLMs) are commonly used when dealing with data from multiple languages and cross-lingual transfer.
Do the models capture moral norms from English and impose them on other languages?
Our experiments demonstrate that, indeed, PMLMs encode differing moral biases, but these do not necessarily correspond to cultural differences or commonalities in human opinions.
arXiv Detail & Related papers (2022-11-14T20:08:54Z) - Do Multilingual Language Models Capture Differing Moral Norms? [71.52261949766101]
Massively multilingual sentence representations are trained on large corpora of uncurated data.
This may cause the models to grasp cultural values including moral judgments from the high-resource languages.
The lack of data in certain languages can also lead to developing random and thus potentially harmful beliefs.
arXiv Detail & Related papers (2022-03-18T12:26:37Z) - Aligning AI With Shared Human Values [85.2824609130584]
We introduce the ETHICS dataset, a new benchmark that spans concepts in justice, well-being, duties, virtues, and commonsense morality.
We find that current language models have a promising but incomplete ability to predict basic human ethical judgements.
Our work shows that progress can be made on machine ethics today, and it provides a steppingstone toward AI that is aligned with human values.
arXiv Detail & Related papers (2020-08-05T17:59:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.