Comparing Moral Values in Western English-speaking societies and LLMs with Word Associations
- URL: http://arxiv.org/abs/2505.19674v2
- Date: Wed, 28 May 2025 06:05:54 GMT
- Title: Comparing Moral Values in Western English-speaking societies and LLMs with Word Associations
- Authors: Chaoyi Xiang, Chunhua Liu, Simon De Deyne, Lea Frermann,
- Abstract summary: We study differences in associations from western English-speaking communities and LLMs trained predominantly on English data.<n>We propose a novel method to propagate moral values based on seed words derived from Moral Foundation Theory.
- Score: 8.445222972341803
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As the impact of large language models increases, understanding the moral values they reflect becomes ever more important. Assessing the nature of moral values as understood by these models via direct prompting is challenging due to potential leakage of human norms into model training data, and their sensitivity to prompt formulation. Instead, we propose to use word associations, which have been shown to reflect moral reasoning in humans, as low-level underlying representations to obtain a more robust picture of LLMs' moral reasoning. We study moral differences in associations from western English-speaking communities and LLMs trained predominantly on English data. First, we create a large dataset of LLM-generated word associations, resembling an existing data set of human word associations. Next, we propose a novel method to propagate moral values based on seed words derived from Moral Foundation Theory through the human and LLM-generated association graphs. Finally, we compare the resulting moral conceptualizations, highlighting detailed but systematic differences between moral values emerging from English speakers and LLM associations.
Related papers
- Cultural Bias in Large Language Models: Evaluating AI Agents through Moral Questionnaires [0.0]
Large Language Models fail to represent diverse cultural moral frameworks despite their linguistic capabilities.<n>Surprisingly, increased model size doesn't consistently improve cultural representation fidelity.<n>Our results call for more grounded alignment objectives and evaluation metrics to ensure AI systems represent diverse human values.
arXiv Detail & Related papers (2025-07-14T08:59:26Z) - Are Language Models Consequentialist or Deontological Moral Reasoners? [69.85385952436044]
We focus on a large-scale analysis of the moral reasoning traces provided by large language models (LLMs)<n>We introduce and test a taxonomy of moral rationales to systematically classify reasoning traces according to two main normative ethical theories: consequentialism and deontology.
arXiv Detail & Related papers (2025-05-27T17:51:18Z) - From Tokens to Thoughts: How LLMs and Humans Trade Compression for Meaning [52.32745233116143]
Humans organize knowledge into compact categories through semantic compression.<n>Large Language Models (LLMs) demonstrate remarkable linguistic abilities.<n>But whether their internal representations strike a human-like trade-off between compression and semantic fidelity is unclear.
arXiv Detail & Related papers (2025-05-21T16:29:00Z) - From Stability to Inconsistency: A Study of Moral Preferences in LLMs [4.12484724941528]
We introduce a Moral Foundations LLM dataset (MFD-LLM) grounded in Moral Foundations Theory.<n>We propose a novel evaluation method that captures the full spectrum of LLMs' revealed moral preferences by answering a range of real-world moral dilemmas.<n>Our findings reveal that state-of-the-art models have remarkably homogeneous value preferences, yet demonstrate a lack of consistency.
arXiv Detail & Related papers (2025-04-08T11:52:50Z) - Normative Evaluation of Large Language Models with Everyday Moral Dilemmas [0.0]
We evaluate large language models (LLMs) on complex, everyday moral dilemmas sourced from the "Am I the Asshole" (AITA) community on Reddit.<n>Our results demonstrate that large language models exhibit distinct patterns of moral judgment, varying substantially from human evaluations on the AITA subreddit.
arXiv Detail & Related papers (2025-01-30T01:29:46Z) - Histoires Morales: A French Dataset for Assessing Moral Alignment [6.521941403514571]
Histoires Morales is a French dataset derived from Moral Stories.<n>We rely on annotations of the moral values within the dataset to ensure their alignment with French norms.<n>We find that while LLMs are generally aligned with human moral norms by default, they can be easily influenced with user-preference optimization for both moral and immoral data.
arXiv Detail & Related papers (2025-01-28T18:07:30Z) - M$^3$oralBench: A MultiModal Moral Benchmark for LVLMs [66.78407469042642]
We introduce M$3$oralBench, the first MultiModal Moral Benchmark for LVLMs.<n>M$3$oralBench expands the everyday moral scenarios in Moral Foundations Vignettes (MFVs) and employs the text-to-image diffusion model, SD3.0, to create corresponding scenario images.<n>It conducts moral evaluation across six moral foundations of Moral Foundations Theory (MFT) and encompasses tasks in moral judgement, moral classification, and moral response.
arXiv Detail & Related papers (2024-12-30T05:18:55Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.<n>This paper shows that the ideological stance of an LLM appears to reflect the worldview of its creators.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - Language Model Alignment in Multilingual Trolley Problems [138.5684081822807]
Building on the Moral Machine experiment, we develop a cross-lingual corpus of moral dilemma vignettes in over 100 languages called MultiTP.<n>Our analysis explores the alignment of 19 different LLMs with human judgments, capturing preferences across six moral dimensions.<n>We discover significant variance in alignment across languages, challenging the assumption of uniform moral reasoning in AI systems.
arXiv Detail & Related papers (2024-07-02T14:02:53Z) - Rethinking Machine Ethics -- Can LLMs Perform Moral Reasoning through the Lens of Moral Theories? [78.3738172874685]
Making moral judgments is an essential step toward developing ethical AI systems.
Prevalent approaches are mostly implemented in a bottom-up manner, which uses a large set of annotated data to train models based on crowd-sourced opinions about morality.
This work proposes a flexible top-down framework to steer (Large) Language Models (LMs) to perform moral reasoning with well-established moral theories from interdisciplinary research.
arXiv Detail & Related papers (2023-08-29T15:57:32Z) - Moral Mimicry: Large Language Models Produce Moral Rationalizations
Tailored to Political Identity [0.0]
This study investigates whether Large Language Models reproduce the moral biases associated with political groups in the United States.
Using tools from Moral Foundations Theory, it is shown that these LLMs are indeed moral mimics.
arXiv Detail & Related papers (2022-09-24T23:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.