Hybrid Deep Learning Model for Multiple Cache Side Channel Attacks Detection: A Comparative Analysis
- URL: http://arxiv.org/abs/2501.17123v1
- Date: Tue, 28 Jan 2025 18:14:43 GMT
- Title: Hybrid Deep Learning Model for Multiple Cache Side Channel Attacks Detection: A Comparative Analysis
- Authors: Tejal Joshi, Aarya Kawalay, Anvi Jamkhande, Amit Joshi,
- Abstract summary: Cache side channel attacks leverage weaknesses in shared computational resources.
This study focuses on a specific class of these threats: fingerprinting attacks.
A hybrid deep learning model is proposed for detecting cache side channel attacks.
- Score: 0.0
- License:
- Abstract: Cache side channel attacks are a sophisticated and persistent threat that exploit vulnerabilities in modern processors to extract sensitive information. These attacks leverage weaknesses in shared computational resources, particularly the last level cache, to infer patterns in data access and execution flows, often bypassing traditional security defenses. Such attacks are especially dangerous as they can be executed remotely without requiring physical access to the victim's device. This study focuses on a specific class of these threats: fingerprinting attacks, where an adversary monitors and analyzes the behavior of co-located processes via cache side channels. This can potentially reveal confidential information, such as encryption keys or user activity patterns. A comprehensive threat model illustrates how attackers sharing computational resources with target systems exploit these side channels to compromise sensitive data. To mitigate such risks, a hybrid deep learning model is proposed for detecting cache side channel attacks. Its performance is compared with five widely used deep learning models: Multi-Layer Perceptron, Convolutional Neural Network, Simple Recurrent Neural Network, Long Short-Term Memory, and Gated Recurrent Unit. The experimental results demonstrate that the hybrid model achieves a detection rate of up to 99.96%. These findings highlight the limitations of existing models, the need for enhanced defensive mechanisms, and directions for future research to secure sensitive data against evolving side channel threats.
Related papers
- PCAP-Backdoor: Backdoor Poisoning Generator for Network Traffic in CPS/IoT Environments [0.6629765271909503]
We introduce textttPCAP-Backdoor, a novel technique that facilitates backdoor poisoning attacks on PCAP datasets.
Experiments on real-world Cyber-Physical Systems (CPS) and Internet of Things (IoT) network traffic datasets demonstrate that attackers can effectively backdoor a model by poisoning as little as 1% or less of the entire training dataset.
arXiv Detail & Related papers (2025-01-26T15:49:34Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
This work investigates the vulnerabilities of security-enhancing diffusion models.
We demonstrate that these models are highly susceptible to DIFF2, a simple yet effective backdoor attack.
Case studies show that DIFF2 can significantly reduce both post-purification and certified accuracy across benchmark datasets and models.
arXiv Detail & Related papers (2024-06-14T02:39:43Z) - Black-box Adversarial Transferability: An Empirical Study in Cybersecurity Perspective [0.0]
In adversarial machine learning, malicious users try to fool the deep learning model by inserting adversarial perturbation inputs into the model during its training or testing phase.
We empirically test the black-box adversarial transferability phenomena in cyber attack detection systems.
The results indicate that any deep learning model is highly susceptible to adversarial attacks, even if the attacker does not have access to the internal details of the target model.
arXiv Detail & Related papers (2024-04-15T06:56:28Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
In this paper, we unveil a new vulnerability: the privacy backdoor attack.
When a victim fine-tunes a backdoored model, their training data will be leaked at a significantly higher rate than if they had fine-tuned a typical model.
Our findings highlight a critical privacy concern within the machine learning community and call for a reevaluation of safety protocols in the use of open-source pre-trained models.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
Multimodal contrastive learning has emerged as a powerful paradigm for building high-quality features.
backdoor attacks subtly embed malicious behaviors within the model during training.
We introduce an innovative token-based localized forgetting training regime.
arXiv Detail & Related papers (2024-03-24T18:33:15Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
This paper considers a regression problem in a wireless setting and shows that adversarial attacks can break the DL-based approach.
We also analyze the effectiveness of adversarial training as a defensive technique in adversarial settings and show that the robustness of DL-based wireless system against attacks improves significantly.
arXiv Detail & Related papers (2022-06-14T04:55:11Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
A backdoored model always predicts a target class in the presence of a predefined trigger pattern.
In general, adversarial training is believed to defend against backdoor attacks.
We propose a hybrid strategy which provides satisfactory robustness across different backdoor attacks.
arXiv Detail & Related papers (2022-02-22T02:24:46Z) - Leaky Nets: Recovering Embedded Neural Network Models and Inputs through
Simple Power and Timing Side-Channels -- Attacks and Defenses [4.014351341279427]
We study the side-channel vulnerabilities of embedded neural network implementations by recovering their parameters.
We demonstrate our attacks on popular micro-controller platforms over networks of different precisions.
Countermeasures against timing-based attacks are implemented and their overheads are analyzed.
arXiv Detail & Related papers (2021-03-26T21:28:13Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - An Empirical Review of Adversarial Defenses [0.913755431537592]
Deep neural networks, which form the basis of such systems, are highly susceptible to a specific type of attack, called adversarial attacks.
A hacker can, even with bare minimum computation, generate adversarial examples (images or data points that belong to another class, but consistently fool the model to get misclassified as genuine) and crumble the basis of such algorithms.
We show two effective techniques, namely Dropout and Denoising Autoencoders, and show their success in preventing such attacks from fooling the model.
arXiv Detail & Related papers (2020-12-10T09:34:41Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
It is well established that neural networks are vulnerable to adversarial examples, which are almost imperceptible on human vision.
Existing defenses are trend to harden the robustness of models against adversarial attacks.
We propose a novel method combined with additional noises and utilize the inconsistency strategy to detect adversarial examples.
arXiv Detail & Related papers (2020-09-06T13:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.