CoRe-Net: Co-Operational Regressor Network with Progressive Transfer Learning for Blind Radar Signal Restoration
- URL: http://arxiv.org/abs/2501.17125v1
- Date: Tue, 28 Jan 2025 18:15:27 GMT
- Title: CoRe-Net: Co-Operational Regressor Network with Progressive Transfer Learning for Blind Radar Signal Restoration
- Authors: Muhammad Uzair Zahid, Serkan Kiranyaz, Alper Yildirim, Moncef Gabbouj,
- Abstract summary: This study introduces a novel model, called Co-Operational Regressor Network (CoRe-Net) for blind radar signal restoration.
CoRe-Net replaces adversarial training with a novel cooperative learning strategy, leveraging the complementary roles of its Apprentice Regressor (AR) and Master Regressor (MR)
Under the fair experimental setup, this study shows that the CoRe-Net surpasses the Op-GANs over a 1 dB mean SNR improvement.
- Score: 15.913517836391357
- License:
- Abstract: Real-world radar signals are frequently corrupted by various artifacts, including sensor noise, echoes, interference, and intentional jamming, differing in type, severity, and duration. This pilot study introduces a novel model, called Co-Operational Regressor Network (CoRe-Net) for blind radar signal restoration, designed to address such limitations and drawbacks. CoRe-Net replaces adversarial training with a novel cooperative learning strategy, leveraging the complementary roles of its Apprentice Regressor (AR) and Master Regressor (MR). The AR restores radar signals corrupted by various artifacts, while the MR evaluates the quality of the restoration and provides immediate and task-specific feedback, ensuring stable and efficient learning. The AR, therefore, has the advantage of both self-learning and assistive learning by the MR. The proposed model has been extensively evaluated over the benchmark Blind Radar Signal Restoration (BRSR) dataset, which simulates diverse real-world artifact scenarios. Under the fair experimental setup, this study shows that the CoRe-Net surpasses the Op-GANs over a 1 dB mean SNR improvement. To further boost the performance gain, this study proposes multi-pass restoration by cascaded CoRe-Nets trained with a novel paradigm called Progressive Transfer Learning (PTL), which enables iterative refinement, thus achieving an additional 2 dB mean SNR enhancement. Multi-pass CoRe-Net training by PTL consistently yields incremental performance improvements through successive restoration passes whilst highlighting CoRe-Net ability to handle such a complex and varying blend of artifacts.
Related papers
- Blind Underwater Image Restoration using Co-Operational Regressor Networks [15.853520058218042]
We propose a novel machine learning model, Co-Operational Regressor Networks (CoRe-Nets)
A CoRe-Net consists of two co-operating networks: the Apprentice Regressor (AR), responsible for image transformation, and the Master Regressor (MR), which evaluates the Peak Signal-to-Noise Ratio (PSNR) of the images generated by the AR and feeds it back to AR.
Our results and the optimized PyTorch implementation of the proposed approach are now publicly shared on GitHub.
arXiv Detail & Related papers (2024-12-05T09:15:21Z) - LoRA-IR: Taming Low-Rank Experts for Efficient All-in-One Image Restoration [62.3751291442432]
We propose LoRA-IR, a flexible framework that dynamically leverages compact low-rank experts to facilitate efficient all-in-one image restoration.
LoRA-IR consists of two training stages: degradation-guided pre-training and parameter-efficient fine-tuning.
Experiments demonstrate that LoRA-IR achieves SOTA performance across 14 IR tasks and 29 benchmarks, while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-20T13:00:24Z) - MOST: MR reconstruction Optimization for multiple downStream Tasks via continual learning [12.0749219807816]
Cascading separately trained reconstruction network and downstream task network has been shown to introduce performance degradation.
We extend this optimization to sequentially introduced multiple downstream tasks and demonstrate that a single MR reconstruction network can be optimized for multiple downstream tasks.
arXiv Detail & Related papers (2024-09-16T15:31:04Z) - BRSR-OpGAN: Blind Radar Signal Restoration using Operational Generative Adversarial Network [15.913517836391357]
Real-world radar signals are often corrupted by a blend of artifacts, including but not limited to unwanted echo, sensor noise, intentional jamming, and interference.
This study introduces Blind Radar Signal Restoration using an Operational Generative Adversarial Network (BRSR-OpGAN)
This approach is designed to improve the quality of radar signals, regardless of the diversity and intensity of the corruption.
arXiv Detail & Related papers (2024-07-18T23:55:48Z) - Learning Detail-Structure Alternative Optimization for Blind
Super-Resolution [69.11604249813304]
We propose an effective and kernel-free network, namely DSSR, which enables recurrent detail-structure alternative optimization without blur kernel prior incorporation for blind SR.
In our DSSR, a detail-structure modulation module (DSMM) is built to exploit the interaction and collaboration of image details and structures.
Our method achieves the state-of-the-art against existing methods.
arXiv Detail & Related papers (2022-12-03T14:44:17Z) - ReIL: A Framework for Reinforced Intervention-based Imitation Learning [3.0846824529023387]
We introduce Reinforced Intervention-based Learning (ReIL), a framework consisting of a general intervention-based learning algorithm and a multi-task imitation learning model.
Experimental results from real world mobile robot navigation challenges indicate that ReIL learns rapidly from sparse supervisor corrections without suffering deterioration in performance.
arXiv Detail & Related papers (2022-03-29T09:30:26Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseRecon is a novel diffusion model-based MR reconstruction method.
It guides the generation process based on the observed signals.
It does not require additional training on specific acceleration factors.
arXiv Detail & Related papers (2022-03-08T02:25:38Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Return-Based Contrastive Representation Learning for Reinforcement
Learning [126.7440353288838]
We propose a novel auxiliary task that forces the learnt representations to discriminate state-action pairs with different returns.
Our algorithm outperforms strong baselines on complex tasks in Atari games and DeepMind Control suite.
arXiv Detail & Related papers (2021-02-22T13:04:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.