Scenario Understanding of Traffic Scenes Through Large Visual Language Models
- URL: http://arxiv.org/abs/2501.17131v1
- Date: Tue, 28 Jan 2025 18:23:12 GMT
- Title: Scenario Understanding of Traffic Scenes Through Large Visual Language Models
- Authors: Rivera Esteban, Lübberstedt Jannik, Nico Uhlemann, Markus Lienkamp,
- Abstract summary: Large Visual Language Models (LVLMs) present a compelling solution by automating image analysis and categorization through contextual queries.
In this study, we evaluate the capabilities of LVLMs to understand and classify urban traffic scenes on both an in-house dataset and the BDD100K.
We propose a scalable captioning pipeline that integrates state-of-the-art models, enabling a flexible deployment on new datasets.
- Score: 0.8437187555622164
- License:
- Abstract: Deep learning models for autonomous driving, encompassing perception, planning, and control, depend on vast datasets to achieve their high performance. However, their generalization often suffers due to domain-specific data distributions, making an effective scene-based categorization of samples necessary to improve their reliability across diverse domains. Manual captioning, though valuable, is both labor-intensive and time-consuming, creating a bottleneck in the data annotation process. Large Visual Language Models (LVLMs) present a compelling solution by automating image analysis and categorization through contextual queries, often without requiring retraining for new categories. In this study, we evaluate the capabilities of LVLMs, including GPT-4 and LLaVA, to understand and classify urban traffic scenes on both an in-house dataset and the BDD100K. We propose a scalable captioning pipeline that integrates state-of-the-art models, enabling a flexible deployment on new datasets. Our analysis, combining quantitative metrics with qualitative insights, demonstrates the effectiveness of LVLMs to understand urban traffic scenarios and highlights their potential as an efficient tool for data-driven advancements in autonomous driving.
Related papers
- RLS3: RL-Based Synthetic Sample Selection to Enhance Spatial Reasoning in Vision-Language Models for Indoor Autonomous Perception [20.01853641155509]
Vision-language model (VLM) fine-tuning for application-specific visual grounding based on natural language instructions has become one of the most popular approaches for learning-enabled autonomous systems.
We propose a new generalizable framework to improve VLM fine-tuning by integrating it with a reinforcement learning (RL) agent.
arXiv Detail & Related papers (2025-01-31T04:30:42Z) - Vision Language Models are In-Context Value Learners [89.29486557646624]
We present Generative Value Learning (GVL), a universal value function estimator that leverages the world knowledge embedded in vision-language models (VLMs) to predict task progress.
Without any robot or task specific training, GVL can in-context zero-shot and few-shot predict effective values for more than 300 distinct real-world tasks.
arXiv Detail & Related papers (2024-11-07T09:17:50Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - PUB: Plot Understanding Benchmark and Dataset for Evaluating Large Language Models on Synthetic Visual Data Interpretation [2.1184929769291294]
This paper presents a novel synthetic dataset designed to evaluate the proficiency of large language models in interpreting data visualizations.
Our dataset is generated using controlled parameters to ensure comprehensive coverage of potential real-world scenarios.
We employ multimodal text prompts with questions related to visual data in images to benchmark several state-of-the-art models.
arXiv Detail & Related papers (2024-09-04T11:19:17Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - TPLLM: A Traffic Prediction Framework Based on Pretrained Large Language Models [27.306180426294784]
We introduce TPLLM, a novel traffic prediction framework leveraging Large Language Models (LLMs)
In this framework, we construct a sequence embedding layer based on Conal Neural Networks (LoCNNs) and a graph embedding layer based on Graph Contemporalal Networks (GCNs) to extract sequence features and spatial features.
Experiments on two real-world datasets demonstrate commendable performance in both full-sample and few-shot prediction scenarios.
arXiv Detail & Related papers (2024-03-04T17:08:57Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - Improving the Performance of Fine-Grain Image Classifiers via Generative
Data Augmentation [0.5161531917413706]
We develop Data Augmentation from Proficient Pre-Training of Robust Generative Adrial Networks (DAPPER GAN)
DAPPER GAN is an ML analytics support tool that automatically generates novel views of training images.
We experimentally evaluate this technique on the Stanford Cars dataset, demonstrating improved vehicle make and model classification accuracy.
arXiv Detail & Related papers (2020-08-12T15:29:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.