論文の概要: Atla Selene Mini: A General Purpose Evaluation Model
- arxiv url: http://arxiv.org/abs/2501.17195v1
- Date: Mon, 27 Jan 2025 15:09:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:54:50.106320
- Title: Atla Selene Mini: A General Purpose Evaluation Model
- Title(参考訳): Atla Selene Mini: 汎用評価モデル
- Authors: Andrei Alexandru, Antonia Calvi, Henry Broomfield, Jackson Golden, Kyle Dai, Mathias Leys, Maurice Burger, Max Bartolo, Roman Engeler, Sashank Pisupati, Toby Drane, Young Sun Park,
- Abstract要約: 我々はSLMJ(Small-as-a-judge)の最先端の小型言語であるAtla Selene Miniを紹介した。
Selene Miniは、全体的なパフォーマンスにおいて最高のSLMJとGPT-4o-miniより優れた汎用評価器である。
RewardBenchで最も高い8B生成モデルである。
- 参考スコア(独自算出の注目度): 2.8802739241542965
- License:
- Abstract: We introduce Atla Selene Mini, a state-of-the-art small language model-as-a-judge (SLMJ). Selene Mini is a general-purpose evaluator that outperforms the best SLMJs and GPT-4o-mini on overall performance across 11 out-of-distribution benchmarks, spanning absolute scoring, classification, and pairwise preference tasks. It is the highest-scoring 8B generative model on RewardBench, surpassing strong baselines like GPT-4o and specialized judges. To achieve this, we develop a principled data curation strategy that augments public datasets with synthetically generated critiques and ensures high quality through filtering and dataset ablations. We train our model on a combined direct preference optimization (DPO) and supervised fine-tuning (SFT) loss, and produce a highly promptable evaluator that excels in real-world scenarios. Selene Mini shows dramatically improved zero-shot agreement with human expert evaluations on financial and medical industry datasets. It is also robust to variations in prompt format. Preliminary results indicate that Selene Mini is the top-ranking evaluator in a live, community-driven Judge Arena. We release the model weights on HuggingFace (https://hf.co/AtlaAI/Selene-1-Mini-Llama-3.1-8B) and Ollama to encourage widespread community adoption.
- Abstract(参考訳): 本稿では,SLMJ(Small-as-a-judge)の最先端技術であるAtla Selene Miniを紹介する。
Selene Miniは、11のアウト・オブ・ディストリビューション・ベンチマークで最高のSLMJとGPT-4o-miniを上回り、絶対スコア、分類、ペアの選好タスクにまたがる汎用評価器である。
これはRewardBench上で最高の8B生成モデルであり、GPT-4oや特別審査員のような強力なベースラインを超えている。
これを実現するために、我々は、公的なデータセットを合成された批評で強化し、フィルタリングとデータセットの短縮によって高品質なデータキュレーション戦略を開発する。
提案手法は,DPOとSFT損失を併用して学習し,実世界のシナリオに優れた高速な評価器を生成する。
Selene Miniは、金融および医療業界のデータセットに関する人間の専門家による評価とのゼロショット契約を劇的に改善したことを示している。
また、プロンプトフォーマットのバリエーションにも頑丈である。
予備的な結果は、Selene Miniがコミュニティ主導のArena判事の中でトップレベルの評価者であることを示唆している。
We release the model weights on HuggingFace (https://hf.co/AtlaAI/Selene-1-Mini-Llama-3.1-8B) and Ollama to encourage spread community adoption。
関連論文リスト
- CompassJudger-1: All-in-one Judge Model Helps Model Evaluation and Evolution [74.41064280094064]
textbfJudger-1は、最初のオープンソースのtextbfall-in-one judge LLMである。
CompassJudger-1は、優れた汎用性を示す汎用LLMである。
textbfJudgerBenchは、様々な主観評価タスクを含む新しいベンチマークである。
論文 参考訳(メタデータ) (2024-10-21T17:56:51Z) - LMMs-Eval: Reality Check on the Evaluation of Large Multimodal Models [71.8065384742686]
LMMS-EVALは50以上のタスクと10以上のモデルを持つ統一的で標準化されたマルチモーダルベンチマークフレームワークである。
LMMS-EVAL LITEは、カバー範囲と効率の両方を重視したプルーニング評価ツールキットである。
マルチモーダルなLIVEBENCHは、ニュースやオンラインフォーラムを継続的に更新し、野生におけるモデルの一般化能力を評価する。
論文 参考訳(メタデータ) (2024-07-17T17:51:53Z) - Data Efficient Evaluation of Large Language Models and Text-to-Image Models via Adaptive Sampling [3.7467864495337624]
SubLIMEはテキスト・ツー・イメージ・モデルのためのデータ効率評価フレームワークである。
我々のアプローチは、完全なデータセットと比較して統計的に整合したモデルランキングを保証する。
HEIMのリーダーボードを利用して、17の異なるベンチマークで25のテキスト・ツー・イメージモデルをカバーしています。
論文 参考訳(メタデータ) (2024-06-21T07:38:55Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - Self-Play Preference Optimization for Language Model Alignment [75.83359213697854]
近年の進歩は、嗜好の確率で直接作業することで、人間の嗜好をより正確に反映できることを示している。
本稿では,言語モデルアライメントのためのセルフプレイ方式を提案する。
我々の手法はSPPO(Self-Play Preference Optimization)と呼ばれ、繰り返しポリシー更新を利用してナッシュ均衡を確実に近似する。
論文 参考訳(メタデータ) (2024-05-01T17:59:20Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - Ranking & Reweighting Improves Group Distributional Robustness [14.021069321266516]
本研究では,DRU(Discounted Rank Upweighting)と呼ばれるランキングベースのトレーニング手法を提案し,テストデータ上で強力なOOD性能を示すモデルを学習する。
いくつかの合成および実世界のデータセットの結果は、群分布シフトに頑健なモデルの選択と学習において、グループレベルの(ソフトミニマックスと異なり)アプローチの優れた能力を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-05-09T20:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。