論文の概要: Probing LLM World Models: Enhancing Guesstimation with Wisdom of Crowds Decoding
- arxiv url: http://arxiv.org/abs/2501.17310v2
- Date: Thu, 30 Jan 2025 07:15:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 11:52:49.043409
- Title: Probing LLM World Models: Enhancing Guesstimation with Wisdom of Crowds Decoding
- Title(参考訳): LLMワールドモデルの提案: 群衆の知恵による客観性向上
- Authors: Yun-Shiuan Chuang, Nikunj Harlalka, Sameer Narendran, Alexander Cheung, Sizhe Gao, Siddharth Suresh, Junjie Hu, Timothy T. Rogers,
- Abstract要約: 本稿では,新しい推定データセットMARBLESを紹介する。
このデータセットでは、コンテナに適合するアイテム数を見積もる必要がある。
LLM推定のためのWAC復号方式を提案する。
- 参考スコア(独自算出の注目度): 42.35821271298182
- License:
- Abstract: Guesstimation, the task of making approximate quantity estimates, is a common real-world challenge. However, it has been largely overlooked in large language models (LLMs) and vision language models (VLMs) research. We introduce a novel guesstimation dataset, MARBLES. This dataset requires one to estimate how many items (e.g., marbles) can fit into containers (e.g., a one-cup measuring cup), both with and without accompanying images. Inspired by the social science concept of the ``Wisdom of Crowds'' (WOC) - taking the median from estimates from a crowd), which has proven effective in guesstimation, we propose ``WOC decoding'' strategy for LLM guesstimation. We show that LLMs/VLMs perform well on guesstimation, suggesting that they possess some level of a "world model" necessary for guesstimation. Moreover, similar to human performance, the WOC decoding method improves LLM/VLM guesstimation accuracy. Furthermore, the inclusion of images in the multimodal condition enhances model performance. These results highlight the value of WOC decoding strategy for LLMs/VLMs and position guesstimation as a probe for evaluating LLMs/VLMs' world model. As LLMs' world model is a fundamental prerequisite for many real-world tasks, e.g., human-AI teaming, our findings have broad implications for the AI community.
- Abstract(参考訳): 近似量推定のタスクであるゲシュミレーションは、現実世界の一般的な課題である。
しかし、大きな言語モデル (LLM) や視覚言語モデル (VLM) の研究では概ね見過ごされている。
本稿では,新しい推定データセットMARBLESを紹介する。
このデータセットでは、イメージを伴わずともコンテナ(例えば、1カップの計測カップ)にどのくらいのアイテム(例えば大理石)が収まるかを見積もる必要があります。
推定に有効な「群衆の知恵」 (WOC) という社会科学概念に着想を得て, LLM推定のための「WOC復号」戦略を提案する。
我々は,LLM/VLMが推定に有効であることを示し,推定に必要な「世界モデル」がある程度存在することを示唆した。
さらに、人的性能と同様、WAC復号法はLLM/VLM推定精度を向上させる。
さらに、マルチモーダル条件に画像を含めることで、モデル性能が向上する。
これらの結果は,LLM/VLMのWOC復号化戦略の価値を強調し,LLM/VLMの世界モデルを評価するためのプローブとしての位置推定を行った。
LLMsの世界モデルは、人間とAIのチームなど、多くの現実世界のタスクにとって基本的な前提条件であるので、私たちの発見はAIコミュニティに幅広い影響を及ぼす。
関連論文リスト
- What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
大規模言語モデル(LLM)は、微調整された多言語事前訓練言語モデルに匹敵する結果が得られる。
本稿では,LLMの機械翻訳品質を評価するために,ソース,参照,翻訳エラー,ガイドラインなどの翻訳情報が必要であるかを検討する。
論文 参考訳(メタデータ) (2024-10-04T09:50:45Z) - Bayesian Statistical Modeling with Predictors from LLMs [5.5711773076846365]
State of the Art Large Language Model (LLM)は、様々なベンチマークタスクで印象的なパフォーマンスを示している。
このことは、LLMから派生した情報の人間的類似性に関する疑問を提起する。
論文 参考訳(メタデータ) (2024-06-13T11:33:30Z) - Evaluating the Factuality of Large Language Models using Large-Scale Knowledge Graphs [30.179703001666173]
大規模言語モデル(LLM)にとって、ファクチュアリティの問題は重要な問題である
我々は,かなり大きなテストデータセットを用いて,LLMの性能を評価するためにGraphEvalを提案する。
テストデータセットは、高価な人的努力なしで1000万以上の事実を持つ大規模な知識グラフから取得される。
論文 参考訳(メタデータ) (2024-04-01T06:01:17Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
エージェント・ディベート支援型メタ評価フレームワークであるScaleEvalを提案する。
フレームワークのコードをGitHubで公開しています。
論文 参考訳(メタデータ) (2024-01-30T07:03:32Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - ProbVLM: Probabilistic Adapter for Frozen Vision-Language Models [69.50316788263433]
本稿では,事前学習された視覚言語モデルの埋め込みに対する確率分布を推定する確率的アダプタProbVLMを提案する。
本稿では,検索タスクにおける不確実性埋め込みのキャリブレーションを定量化し,ProbVLMが他の手法よりも優れていることを示す。
本稿では,大規模な事前学習型潜伏拡散モデルを用いて,埋め込み分布を可視化する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-01T18:16:06Z) - LVLM-eHub: A Comprehensive Evaluation Benchmark for Large
Vision-Language Models [55.304181390027274]
本稿では,LVLM評価ハブ(LVLM-eHub)の構築により,一般公開された大規模マルチモーダルモデルの包括的評価を行う。
我々のLVLM-eHubは、InstructBLIPやMiniGPT-4などの代表的LVLMから成り、定量的能力評価とオンラインアリーナプラットフォームによって徹底的に評価されている。
この研究は、いくつかの革新的な発見を明らかにしている。まず、インストラクタBLIPのような膨大なドメイン内データを持つ命令調整型LVLMは、多くの既存のタスクを過度にオーバーフィットさせ、オープンワールドのシナリオでは一般化が不十分である。
論文 参考訳(メタデータ) (2023-06-15T16:39:24Z) - Statistical Knowledge Assessment for Large Language Models [79.07989821512128]
ファクトイドの問題に関する様々なプロンプトを考慮すれば、大きな言語モデル(LLM)は事実的に正しい答えを確実に生成できるだろうか?
LLMの事実知識を評価する統計的手法であるKaRRを提案する。
この結果から,同じバックボーン構造を持つLLMの知識はスケーリング法則に則っており,命令追従データに基づくチューニングは,実際に正しいテキストを確実に生成するモデルの能力を損なう場合があることがわかった。
論文 参考訳(メタデータ) (2023-05-17T18:54:37Z) - LLMMaps -- A Visual Metaphor for Stratified Evaluation of Large Language
Models [13.659853119356507]
大規模言語モデル(LLM)は自然言語処理に革命をもたらし、様々なタスクにおいて印象的な能力を示した。
彼らは幻覚を起こす傾向があり、モデルがその反応の中で誤った情報や誤った情報を公開する。
ユーザによるQ&Aデータセットに対するLLMの性能評価を可能にする新しい可視化手法として,LLMMapsを提案する。
論文 参考訳(メタデータ) (2023-04-02T05:47:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。