WASUP: Interpretable Classification with Weight-Input Alignment and Class-Discriminative SUPports Vectors
- URL: http://arxiv.org/abs/2501.17328v1
- Date: Tue, 28 Jan 2025 22:39:03 GMT
- Title: WASUP: Interpretable Classification with Weight-Input Alignment and Class-Discriminative SUPports Vectors
- Authors: Tom Nuno Wolf, Christian Wachinger,
- Abstract summary: We introduce WASUP, a neural network that provides local and global explanations of its decision-making process.
We evaluate WASUP on three tasks: fine-grained classification on Stanford Dogs, multi-label classification on Pascal VOC, and pathology detection on the RSNA dataset.
- Score: 2.5628953713168685
- License:
- Abstract: The deployment of deep learning models in critical domains necessitates a balance between high accuracy and interpretability. We introduce WASUP, an inherently interpretable neural network that provides local and global explanations of its decision-making process. We prove that these explanations are faithful by fulfilling established axioms for explanations. Leveraging the concept of case-based reasoning, WASUP extracts class-representative support vectors from training images, ensuring they capture relevant features while suppressing irrelevant ones. Classification decisions are made by calculating and aggregating similarity scores between these support vectors and the input's latent feature vector. We employ B-Cos transformations, which align model weights with inputs to enable faithful mappings of latent features back to the input space, facilitating local explanations in addition to global explanations of case-based reasoning. We evaluate WASUP on three tasks: fine-grained classification on Stanford Dogs, multi-label classification on Pascal VOC, and pathology detection on the RSNA dataset. Results indicate that WASUP not only achieves competitive accuracy compared to state-of-the-art black-box models but also offers insightful explanations verified through theoretical analysis. Our findings underscore WASUP's potential for applications where understanding model decisions is as critical as the decisions themselves.
Related papers
- Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Attri-Net: A Globally and Locally Inherently Interpretable Model for Multi-Label Classification Using Class-Specific Counterfactuals [4.384272169863716]
Interpretability is crucial for machine learning algorithms in high-stakes medical applications.
Attri-Net is an inherently interpretable model for multi-label classification that provides local and global explanations.
arXiv Detail & Related papers (2024-06-08T13:52:02Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
We introduce LaPLACE-explainer, designed to provide probabilistic cause-and-effect explanations for machine learning models.
The LaPLACE-Explainer component leverages the concept of a Markov blanket to establish statistical boundaries between relevant and non-relevant features.
Our approach offers causal explanations and outperforms LIME and SHAP in terms of local accuracy and consistency of explained features.
arXiv Detail & Related papers (2023-10-01T04:09:59Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - On Computing Probabilistic Abductive Explanations [30.325691263226968]
The most widely studied explainable AI (XAI) approaches are unsound.
PI-explanations also exhibit important drawbacks, the most visible of which is arguably their size.
This paper investigates practical approaches for computing relevant sets for a number of widely used classifiers.
arXiv Detail & Related papers (2022-12-12T15:47:10Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - ADVISE: ADaptive Feature Relevance and VISual Explanations for
Convolutional Neural Networks [0.745554610293091]
We introduce ADVISE, a new explainability method that quantifies and leverages the relevance of each unit of the feature map to provide better visual explanations.
We extensively evaluate our idea in the image classification task using AlexNet, VGG16, ResNet50, and Xception pretrained on ImageNet.
Our experiments further show that ADVISE fulfils the sensitivity and implementation independence axioms while passing the sanity checks.
arXiv Detail & Related papers (2022-03-02T18:16:57Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Boundary Attributions Provide Normal (Vector) Explanations [27.20904776964045]
Boundary Attribution (BA) is a new explanation method to address this question.
BA involves computing normal vectors of the local decision boundaries for the target input.
We prove two theorems for ReLU networks: BA of randomized smoothed networks or robustly trained networks is much closer to non-boundary attribution methods than that in standard networks.
arXiv Detail & Related papers (2021-03-20T22:36:39Z) - Toward Scalable and Unified Example-based Explanation and Outlier
Detection [128.23117182137418]
We argue for a broader adoption of prototype-based student networks capable of providing an example-based explanation for their prediction.
We show that our prototype-based networks beyond similarity kernels deliver meaningful explanations and promising outlier detection results without compromising classification accuracy.
arXiv Detail & Related papers (2020-11-11T05:58:17Z) - Explainable Deep Classification Models for Domain Generalization [94.43131722655617]
Explanations are defined as regions of visual evidence upon which a deep classification network makes a decision.
Our training strategy enforces a periodic saliency-based feedback to encourage the model to focus on the image regions that directly correspond to the ground-truth object.
arXiv Detail & Related papers (2020-03-13T22:22:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.