論文の概要: LLM Assistance for Pediatric Depression
- arxiv url: http://arxiv.org/abs/2501.17510v1
- Date: Wed, 29 Jan 2025 09:27:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:55:05.766383
- Title: LLM Assistance for Pediatric Depression
- Title(参考訳): 小児抑うつのためのLCM支援
- Authors: Mariia Ignashina, Paulina Bondaronek, Dan Santel, John Pestian, Julia Ive,
- Abstract要約: 本研究は,小児期における抑うつ的症状抽出のための最先端LPMの実現可能性について検討した(年齢6~24歳)。
Flanは平均F1: 0.65, 精度: 0.78) で, 睡眠障害 (F1: 0.92) や自覚症状 (F1: 0.8) などの稀な症状の抽出に優れていた。
Llama 3は、最も高いリコール(0.90)を持ち、症状を過度に一般化し、この種の分析には適さない。
- 参考スコア(独自算出の注目度): 2.1398676192061683
- License:
- Abstract: Traditional depression screening methods, such as the PHQ-9, are particularly challenging for children in pediatric primary care due to practical limitations. AI has the potential to help, but the scarcity of annotated datasets in mental health, combined with the computational costs of training, highlights the need for efficient, zero-shot approaches. In this work, we investigate the feasibility of state-of-the-art LLMs for depressive symptom extraction in pediatric settings (ages 6-24). This approach aims to complement traditional screening and minimize diagnostic errors. Our findings show that all LLMs are 60% more efficient than word match, with Flan leading in precision (average F1: 0.65, precision: 0.78), excelling in the extraction of more rare symptoms like "sleep problems" (F1: 0.92) and "self-loathing" (F1: 0.8). Phi strikes a balance between precision (0.44) and recall (0.60), performing well in categories like "Feeling depressed" (0.69) and "Weight change" (0.78). Llama 3, with the highest recall (0.90), overgeneralizes symptoms, making it less suitable for this type of analysis. Challenges include the complexity of clinical notes and overgeneralization from PHQ-9 scores. The main challenges faced by LLMs include navigating the complex structure of clinical notes with content from different times in the patient trajectory, as well as misinterpreting elevated PHQ-9 scores. We finally demonstrate the utility of symptom annotations provided by Flan as features in an ML algorithm, which differentiates depression cases from controls with high precision of 0.78, showing a major performance boost compared to a baseline that does not use these features.
- Abstract(参考訳): PHQ-9のような従来のうつ病スクリーニング手法は、実際的な制限のために小児のプライマリケアにおいて特に困難である。
AIは役に立つ可能性があるが、メンタルヘルスにおける注釈付きデータセットの不足と、トレーニングの計算コストが相まって、効率的でゼロショットなアプローチの必要性を強調している。
本研究は,小児期における抑うつ的症状抽出(6~24歳)における最先端LPMの実現可能性について検討する。
このアプローチは、従来のスクリーニングを補完し、診断エラーを最小限にすることを目的としている。
Flanは平均F1: 0.65, 精度: 0.78) で, 睡眠障害 (F1: 0.92) や自覚症状 (F1: 0.8) などの稀な症状の抽出に優れていた。
Phi は精度 (0.44) とリコール (0.60) のバランスをとり、"Feeling depressed" (0.69) や "Weight Change" (0.78) といったカテゴリでよく機能する。
Llama 3は、最も高いリコール(0.90)を持ち、症状を過度に一般化し、この種の分析には適さない。
課題は、臨床ノートの複雑さとPHQ-9スコアからの過度な一般化である。
LLMが直面している主な課題は、患者軌跡の異なる時間で臨床ノートの複雑な構造をナビゲートすること、PHQ-9のスコアを誤解釈することである。
我々は最終的に、Flan氏がMLアルゴリズムの機能として提供する症状アノテーションの有用性を実証した。これは、うつ病のケースを精度0.78のコントロールと区別し、これらの機能を使用しないベースラインと比較して大きなパフォーマンス向上を示す。
関連論文リスト
- Artificial Intelligence-Based Triaging of Cutaneous Melanocytic Lesions [0.8864540224289991]
患者数の増加とより包括的な診断の必要性により、病理学者は作業負荷の増大に直面している。
われわれは,全スライド画像に基づいて皮膚メラノサイト性病変をトリアージする人工知能(AI)モデルを開発した。
論文 参考訳(メタデータ) (2024-10-14T13:49:04Z) - Mental Health Diagnosis in the Digital Age: Harnessing Sentiment
Analysis on Social Media Platforms upon Ultra-Sparse Feature Content [3.6195994708545016]
3次元構造を持つ新しい意味的特徴前処理手法を提案する。
強化されたセマンティック機能により、精神障害を予測および分類するために機械学習モデルを訓練する。
提案手法は,7つのベンチマークモデルと比較して,大幅な性能向上を示した。
論文 参考訳(メタデータ) (2023-11-09T00:15:06Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
本研究は,冠動脈造影画像(CA)の狭窄検出におけるFL(Federated Learning)の使用について検討した。
アンコナのOspedale Riuniti(イタリア)で取得した200人の患者1219枚の画像を含む2施設の異種データセットについて検討した。
データセット2には、文献で利用可能な90人の患者からの7492のシーケンシャルな画像が含まれている。
論文 参考訳(メタデータ) (2023-10-30T11:13:40Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - An interpretable imbalanced semi-supervised deep learning framework for improving differential diagnosis of skin diseases [8.120827875780382]
本稿では,多種性インテリジェント皮膚診断フレームワーク(ISDL)の解釈可能性と非バランス半教師あり学習に関する最初の研究について述べる。
ISDLは0.979の精度,0.975の感度,0.973の特異度,0.974のマクロF1スコア,およびマルチラベル皮膚疾患分類における0.999の受信操作特性曲線(AUC)以下の領域を有望な性能で達成した。
論文 参考訳(メタデータ) (2022-11-20T03:33:33Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
心エコービデオを用いた自己教師型コントラスト学習手法であるエコーCLRを開発した。
左室肥大症 (LVH) と大動脈狭窄症 (AS) の分類成績は,EchoCLR の訓練により有意に改善した。
EchoCLRは、医療ビデオの表現を学習する能力に特有であり、SSLがラベル付きデータセットからラベル効率の高い疾患分類を可能にすることを実証している。
論文 参考訳(メタデータ) (2022-07-23T19:17:26Z) - A Scalable Workflow to Build Machine Learning Classifiers with
Clinician-in-the-Loop to Identify Patients in Specific Diseases [10.658425378457363]
臨床医は、EHR(Electronic Health Records)から疾患のある患者を識別するために、ICD(International Classification of Diseases)などの医療コーディングシステムを利用することができる。
近年の研究では、ICD符号は、実際の臨床実践において特定の疾患に対して、患者を正確に特徴づけることができないことが示唆されている。
本稿では,構造化データと非構造化テキストノートの両方を,NLP,AutoML,Cysian-in-the-Loop機構などの技術で活用するスケーラブルなワークフローを提案する。
論文 参考訳(メタデータ) (2022-05-18T12:24:07Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
この課題には10,091個のパッチレベルのアノテーションと1300万以上のラベル付きピクセルが含まれる。
第一位チームは0.8413mIoUを達成した(腫瘍:0.8389、ストーマ:0.7931、正常:0.8919)。
論文 参考訳(メタデータ) (2022-04-13T15:27:05Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
そこで本研究では,病変からスライスまでのマッピング機能に基づく,病変レベルのコスト感受性損失と付加的なスライスレベルの損失を組み込んだ新しいPCa検出ネットワークを提案する。
1) 病変レベルFNRを0.19から0.10に, 病変レベルFPRを1.03から0.66に減らした。
論文 参考訳(メタデータ) (2021-06-04T09:51:27Z) - Deep Learning-based Computational Pathology Predicts Origins for Cancers
of Unknown Primary [2.645435564532842]
原発不明癌 (CUP) は腫瘍由来の原発性解剖学的部位を特定できない診断群である。
最近の研究は、腫瘍原点の同定にゲノム学と転写学を使うことに重点を置いている。
深層学習に基づくCUPの差分診断が可能な計算病理アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-24T17:59:36Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
提案法は,非造影胸部CTを入力として,病変,肺,葉を3次元に分割する。
この方法では、肺の重症度と葉の関与度を2つの組み合わせて測定し、COVID-19の異常度と高不透明度の存在度を定量化する。
このアルゴリズムの評価は、カナダ、ヨーロッパ、米国からの200人の参加者(感染者100人、健康管理100人)のCTで報告されている。
論文 参考訳(メタデータ) (2020-04-02T21:49:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。