論文の概要: An Exceptional Dataset For Rare Pancreatic Tumor Segmentation
- arxiv url: http://arxiv.org/abs/2501.17555v1
- Date: Wed, 29 Jan 2025 10:43:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:54:36.148612
- Title: An Exceptional Dataset For Rare Pancreatic Tumor Segmentation
- Title(参考訳): 膵腫瘍切除のための例外的データセット
- Authors: Wenqi Li, Yingli Chen, Keyang Zhou, Xiaoxiao Hu, Zilu Zheng, Yue Yan, Xinpeng Zhang, Wei Tang, Zhenxing Qian,
- Abstract要約: 膵内分泌腫瘍(pNETs)は全膵悪性腫瘍の5%未満を占めており、10万人あたり1-1.5の症例しか発生しない。
研究者が利用可能なpNET用のデータセットは存在していない。
これは、pNET専用の最初のデータセットであり、以前のコレクションと区別している。
- 参考スコア(独自算出の注目度): 33.90400003882738
- License:
- Abstract: Pancreatic NEuroendocrine Tumors (pNETs) are very rare endocrine neoplasms that account for less than 5% of all pancreatic malignancies, with an incidence of only 1-1.5 cases per 100,000. Early detection of pNETs is critical for improving patient survival, but the rarity of pNETs makes segmenting them from CT a very challenging problem. So far, there has not been a dataset specifically for pNETs available to researchers. To address this issue, we propose a pNETs dataset, a well-annotated Contrast-Enhanced Computed Tomography (CECT) dataset focused exclusively on Pancreatic Neuroendocrine Tumors, containing data from 469 patients. This is the first dataset solely dedicated to pNETs, distinguishing it from previous collections. Additionally, we provide the baseline detection networks with a new slice-wise weight loss function designed for the UNet-based model, improving the overall pNET segmentation performance. We hope that our dataset can enhance the understanding and diagnosis of pNET Tumors within the medical community, facilitate the development of more accurate diagnostic tools, and ultimately improve patient outcomes and advance the field of oncology.
- Abstract(参考訳): 膵内分泌腫瘍(pNET)は非常に稀な内分泌腫瘍であり、全膵悪性腫瘍の5%以下であり、10万あたり1-1.5例しか発生しない。
pNETの早期検出は、患者の生存率を向上させるために重要であるが、pNETの希少性は、それらをCTから切り離すことを非常に難しい問題にしている。
これまでのところ、研究者が利用できるpNET用のデータセットは存在していない。
そこで本研究では,膵神経内分泌腫瘍を対象とする造影CT(Contrast-Enhanced Computed Tomography, CECT)データセットとして,469例のデータを含むpNETデータセットを提案する。
これは、pNET専用の最初のデータセットであり、以前のコレクションと区別している。
さらに、UNetモデル用に設計されたスライスワイスワイスウェイト損失関数をベースライン検出ネットワークに提供することにより、全体的なpNETセグメンテーション性能が向上する。
我々のデータセットは、医療コミュニティにおけるpNET腫瘍の理解と診断を強化し、より正確な診断ツールの開発を促進し、最終的には患者の成果を改善し、腫瘍学の分野を前進させることを願っている。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - RCdpia: A Renal Carcinoma Digital Pathology Image Annotation dataset based on pathologists [14.79279940958727]
腫瘍領域と隣接領域(RCdpia)を個別にラベル付けしたTCGAデジタル病理データセットを作成した。
このデータセットはhttp://39.171.241.18:8888/RCdpia/で公開されている。
論文 参考訳(メタデータ) (2024-03-17T13:23:25Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
カナダでは、前立腺がんは男性でもっとも一般的ながんであり、2022年のこの人口統計では、新しいがん症例の20%を占めている。
拡散強調画像(DWI)データを用いた前立腺癌診断,予後,治療計画のためのディープニューラルネットワークの開発には大きな関心が寄せられている。
本研究では,解剖学的条件制御型潜伏拡散戦略の導入により,現実的な前立腺DWIデータを生成するための潜伏拡散の有効性について検討した。
論文 参考訳(メタデータ) (2023-11-30T15:11:03Z) - FS-Net: Full Scale Network and Adaptive Threshold for Improving Extraction of Micro-Retinal Vessel Structures [4.507779218329283]
網膜血管の分節は独特の課題を呈する。
最近のニューラルネットワークアプローチは、ローカルとグローバルプロパティのバランスをとるのに苦労している。
エンコーダ・デコーダニューラルネットワークアーキテクチャに基づく包括的マイクロ容器抽出機構を提案する。
論文 参考訳(メタデータ) (2023-11-14T10:32:17Z) - Detection and Segmentation of Pancreas using Morphological Snakes and
Deep Convolutional Neural Networks [0.0]
膵癌は最も致命的なタイプのがんの1つであり、診断された患者の25%は1年間しか生存せず、6%は5年間生存している。
このような画像の高度な解析は、しばしば時間を要する課題である膵を手動で分割する必要がある。
本論文は, 膵分画の2段階的アプローチについて検討し, この課題に対処するものである。
このセグメンテーションタスクは、形態的アクティブな輪郭アルゴリズムと同様に、収穫データに適用された修正されたU-Netモデルによって取り組まれる。
論文 参考訳(メタデータ) (2023-02-13T13:43:50Z) - Survival Analysis for Idiopathic Pulmonary Fibrosis using CT Images and
Incomplete Clinical Data [17.162038700963418]
特発性肺線維症(IPF)は線維性肺疾患である。
肺のCTスキャンはIPF患者の臨床的評価を通知し、疾患の進行に関する関連する情報を含む。
臨床および画像データを用いたIPF患者の生存率を予測するために,ニューラルネットワークとメモリバンクを用いたマルチモーダル手法を提案する。
論文 参考訳(メタデータ) (2022-03-21T23:48:47Z) - An Ensemble Approach for Patient Prognosis of Head and Neck Tumor Using
Multimodal Data [0.0]
頭頸部腫瘍の予後を予測するために,深層マルチタスクロジスティック回帰(MTLR),コックス比重ハザード(CoxPH),CNNモデルを組み込んだマルチモーダルネットワークを提案する。
提案手法は,HECKTORテストセットのC-インデックス0.72を達成し,HECKTORチャレンジの予後タスクにおける第1位を救った。
論文 参考訳(メタデータ) (2022-02-25T07:50:59Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
本研究は,腹部CTで膵神経内分泌腫瘍(PNET)を早期に検出するための包括的結果を提示する。
我々の知る限りでは、このタスクは以前まで計算タスクとして研究されていなかった。
我々の手法は最先端のセグメンテーションネットワークより優れ、感度は89.47%、特異性は81.08%である。
論文 参考訳(メタデータ) (2020-04-04T21:21:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。