Optimal Performance of an Asymmetric Quantum Harmonic Otto Engine and Refrigerator
- URL: http://arxiv.org/abs/2501.17592v2
- Date: Wed, 05 Mar 2025 10:45:55 GMT
- Title: Optimal Performance of an Asymmetric Quantum Harmonic Otto Engine and Refrigerator
- Authors: Monika, Shishram Rebari,
- Abstract summary: We study the asymmetry present between the two adiabatic processes of the Otto cycle, focusing on cases of sudden expansion and sudden compression.<n>We derive the efficiency and coefficient of performance for an asymmetric Otto cycle, employing the Omega function.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a quantum Otto cycle operating with a time-dependent harmonic oscillator as the working material. We examine the asymmetry present between the two adiabatic processes of the Otto cycle, focusing on cases of sudden expansion and sudden compression. We analytically derive the efficiency and coefficient of performance for an asymmetric Otto cycle, employing the Omega function, which represents the balance between the maximum useful energy and minimum lost energy. Notably, our findings reveal that the efficiency (coefficient of performance) of an asymmetric engine (refrigerator) is higher during the sudden compression case compared to the sudden expansion case. Furthermore, we derive the results for the maximum work efficiency and observe that efficiency at the maximum Omega function consistently exceeds the maximum work efficiency. Finally, we compute the fractional loss of work in both cases to thoroughly examine the performance of asymmetric Otto engine.
Related papers
- Asymmetric Quantum Harmonic Otto Engine Under Hot Squeezed Thermal Reservoir [1.529894135341708]
We study a quantum harmonic Otto engine under a hot squeezed thermal reservoir with asymmetry between the two adiabatic branches.
In the first configuration, the driving protocol for the expansion stroke is sudden-switch in nature and compression stroke is driven adiabatically.
We find that the maximum achievable efficiency in sudden expansion case is 1/2 only while it approaches unity for the sudden compression stroke.
arXiv Detail & Related papers (2024-11-25T05:59:20Z) - A finite-time quantum Otto engine with tunnel coupled one-dimensional Bose gases [0.0]
We study a finite-time quantum Otto engine cycle driven by inter-particle interactions in a weakly interacting Bose gas.
We find that, unlike a uniform 1D Bose gas, a harmonically trapped quasicondensate cannot operate purely as a emphheat engine.
arXiv Detail & Related papers (2024-04-25T09:54:21Z) - Three-dimensional harmonic oscillator as a quantum Otto engine [65.268245109828]
The coupling between the working fluid and the baths is controlled using an external central potential.
The efficiency and power of several realizations of the proposed engine are computed.
arXiv Detail & Related papers (2023-12-06T09:52:53Z) - Advantages of non-Hookean coupling in a measurement-fueled
two-oscillator engine [65.268245109828]
A quantum engine composed of two oscillators with a non-Hookean coupling is proposed.
Unlike the more common quantum heat engines, the setup introduced here does not require heat baths as the energy for the operation originates from measurements.
Numerical simulations are used to demonstrate the measurement-driven fueling, as well as the reduced decoupling energy.
arXiv Detail & Related papers (2023-11-08T04:09:26Z) - The asymmetric Otto engine: frictional effects on performance bounds and
operational modes [0.0]
We show that the Otto cycle under consideration cannot operate as a heat engine in the low-temperature regime.
We analytically characterize the complete phase diagram of the Otto cycle for both driving schemes and highlight the different operational modes of the cycle as a heat engine, refrigerator, accelerator, and heater.
arXiv Detail & Related papers (2023-10-10T10:51:01Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Powerful ordered collective heat engines [58.720142291102135]
We introduce a class of engines in which the regime of units operating synchronously can boost the performance.
We show that the interplay between Ising-like interactions and a collective ordered regime is crucial to operate as a heat engine.
arXiv Detail & Related papers (2023-01-16T20:14:19Z) - Optimization of Asymmetric Quantum Otto Engine Cycles [0.0]
We consider a finite-time quantum Otto heat engine cycle consisting of compression and expansion work strokes of unequal duration.
The asymmetry of the cycle is characterized by a parameter $r_u$ giving the ratio of the times for the compression and expansion work strokes.
arXiv Detail & Related papers (2022-04-10T22:22:28Z) - Unified trade-off optimization of quantum harmonic Otto engine and
refrigerator [0.0]
We derive analytical expressions for the efficiency and coefficient of performance of the Otto cycle.
For the case of adiabatic driving, we point out that in the low-temperature regime, the harmonic Otto engine can be mapped to Feynman's ratchet and pawl model.
arXiv Detail & Related papers (2021-12-20T16:53:02Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Collective effects on the performance and stability of quantum heat
engines [62.997667081978825]
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest.
One essential question is whether collective effects may help to carry enhancements over larger scales.
We study how power, efficiency and constancy scale with the number of spins composing the engine.
arXiv Detail & Related papers (2021-06-25T18:00:07Z) - Maximal power for heat engines: role of asymmetric interaction times [110.83289076967895]
We introduce the idea of adjusting the interaction time asymmetry in order to optimize the engine performance.
Distinct optimization protocols are analyzed in the framework of thermodynamics.
arXiv Detail & Related papers (2020-12-16T22:26:14Z) - Performance bounds of non-adiabatic quantum harmonic Otto engine and
refrigerator under a squeezed thermal reservoir [0.0]
We show that the maximum efficiency that our engine can achieve is 1/2 only, which is in contrast with the earlier studies claiming unit efficiency under the effect of squeezed reservoir.
In the presence of squeezing in the cold reservoir, we specify an operational regime for the Otto refrigerator otherwise forbidden in the standard case.
arXiv Detail & Related papers (2020-06-15T12:02:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.