Technical report on label-informed logit redistribution for better domain generalization in low-shot classification with foundation models
- URL: http://arxiv.org/abs/2501.17595v2
- Date: Thu, 30 Jan 2025 18:07:59 GMT
- Title: Technical report on label-informed logit redistribution for better domain generalization in low-shot classification with foundation models
- Authors: Behraj Khan, Tahir Syed,
- Abstract summary: Confidence calibration is an emerging challenge in real-world decision systems based on foundations models.<n>We propose a penalty incorporated into loss objective that penalizes incorrect classifications whenever one is made during finetuning.<n>We refer to it as textitconfidence misalignment penalty (CMP).
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Confidence calibration is an emerging challenge in real-world decision systems based on foundations models when used for downstream vision classification tasks. Due to various reasons exposed, logit scores on the CLIP head remain large irrespective of whether the image-language pairs reconcile. It is difficult to address in data space, given the few-shot regime. We propose a penalty incorporated into loss objective that penalizes incorrect classifications whenever one is made during finetuning, by moving an amount of log-likelihood to the true class commensurate to the relative amplitudes of the two likelihoods. We refer to it as \textit{confidence misalignment penalty (CMP)}. Extensive experiments on $12$ vision datasets and $5$ domain generalization datasets supports the calibration performance of our method against stat-of-the-art. CMP outperforms the benchmarked prompt learning methods, demonstrating average improvement in Expected Calibration Error (ECE) by average $6.01$\%, $4.01$ \% at minimum and $9.72$\% at maximum.
Related papers
- Enhancing Zero-Shot Vision Models by Label-Free Prompt Distribution Learning and Bias Correcting [55.361337202198925]
Vision-language models, such as CLIP, have shown impressive generalization capacities when using appropriate text descriptions.
We propose a label-Free prompt distribution learning and bias correction framework, dubbed as **Frolic**, which boosts zero-shot performance without the need for labeled data.
arXiv Detail & Related papers (2024-10-25T04:00:45Z) - Transductive Zero-Shot and Few-Shot CLIP [24.592841797020203]
This paper addresses the transductive zero-shot and few-shot CLIP classification challenge.
Inference is performed jointly across a mini-batch of unlabeled query samples, rather than treating each instance independently.
Our approach yields near 20% improvement in ImageNet accuracy over CLIP's zero-shot performance.
arXiv Detail & Related papers (2024-04-08T12:44:31Z) - On support vector machines under a multiple-cost scenario [1.743685428161914]
Support Vector Machine (SVM) is a powerful tool in binary classification.
We propose a novel SVM model in which misclassification costs are considered by incorporating performance constraints.
arXiv Detail & Related papers (2023-12-22T16:12:25Z) - REAL: A Representative Error-Driven Approach for Active Learning [15.477921200056887]
$REAL$ is a novel approach to select data instances with $underlineR$epresentative $underlineE$rrors for $underlineA$ctive $underlineL$.
It identifies minority predictions as emphpseudo errors within a cluster and allocates an adaptive sampling budget for the cluster based on estimated error density.
arXiv Detail & Related papers (2023-07-03T12:39:26Z) - Class Prototype-based Cleaner for Label Noise Learning [73.007001454085]
Semi-supervised learning methods are current SOTA solutions to the noisy-label learning problem.
We propose a simple yet effective solution, named textbfClass textbfPrototype-based label noise textbfCleaner.
arXiv Detail & Related papers (2022-12-21T04:56:41Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Bias Mimicking: A Simple Sampling Approach for Bias Mitigation [57.17709477668213]
We introduce a new class-conditioned sampling method: Bias Mimicking.
Bias Mimicking improves underrepresented groups' accuracy of sampling methods by 3% over four benchmarks.
arXiv Detail & Related papers (2022-09-30T17:33:00Z) - Label Distributionally Robust Losses for Multi-class Classification:
Consistency, Robustness and Adaptivity [55.29408396918968]
We study a family of loss functions named label-distributionally robust (LDR) losses for multi-class classification.
Our contributions include both consistency and robustness by establishing top-$k$ consistency of LDR losses for multi-class classification.
We propose a new adaptive LDR loss that automatically adapts the individualized temperature parameter to the noise degree of class label of each instance.
arXiv Detail & Related papers (2021-12-30T00:27:30Z) - Newer is not always better: Rethinking transferability metrics, their
peculiarities, stability and performance [5.650647159993238]
Fine-tuning of large pre-trained image and language models on small customized datasets has become increasingly popular.
We show that the statistical problems with covariance estimation drive the poor performance of H-score.
We propose a correction and recommend measuring correlation performance against relative accuracy in such settings.
arXiv Detail & Related papers (2021-10-13T17:24:12Z) - Test-time Batch Statistics Calibration for Covariate Shift [66.7044675981449]
We propose to adapt the deep models to the novel environment during inference.
We present a general formulation $alpha$-BN to calibrate the batch statistics.
We also present a novel loss function to form a unified test time adaptation framework Core.
arXiv Detail & Related papers (2021-10-06T08:45:03Z) - Almost Tight L0-norm Certified Robustness of Top-k Predictions against
Adversarial Perturbations [78.23408201652984]
Top-k predictions are used in many real-world applications such as machine learning as a service, recommender systems, and web searches.
Our work is based on randomized smoothing, which builds a provably robust classifier via randomizing an input.
For instance, our method can build a classifier that achieves a certified top-3 accuracy of 69.2% on ImageNet when an attacker can arbitrarily perturb 5 pixels of a testing image.
arXiv Detail & Related papers (2020-11-15T21:34:44Z) - Multi-label Contrastive Predictive Coding [125.03510235962095]
Variational mutual information (MI) estimators are widely used in unsupervised representation learning methods such as contrastive predictive coding (CPC)
We introduce a novel estimator based on a multi-label classification problem, where the critic needs to jointly identify multiple positive samples at the same time.
We show that using the same amount of negative samples, multi-label CPC is able to exceed the $log m$ bound, while still being a valid lower bound of mutual information.
arXiv Detail & Related papers (2020-07-20T02:46:21Z) - Generalized Focal Loss: Learning Qualified and Distributed Bounding
Boxes for Dense Object Detection [85.53263670166304]
One-stage detector basically formulates object detection as dense classification and localization.
Recent trend for one-stage detectors is to introduce an individual prediction branch to estimate the quality of localization.
This paper delves into the representations of the above three fundamental elements: quality estimation, classification and localization.
arXiv Detail & Related papers (2020-06-08T07:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.