論文の概要: FeatureGS: Eigenvalue-Feature Optimization in 3D Gaussian Splatting for Geometrically Accurate and Artifact-Reduced Reconstruction
- arxiv url: http://arxiv.org/abs/2501.17655v1
- Date: Wed, 29 Jan 2025 13:40:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:53:56.425862
- Title: FeatureGS: Eigenvalue-Feature Optimization in 3D Gaussian Splatting for Geometrically Accurate and Artifact-Reduced Reconstruction
- Title(参考訳): FeatureGS: 幾何的精度とアーチファクト再現のための3次元ガウス平滑化における固有値-特徴最適化
- Authors: Miriam Jäger, Markus Hillemann, Boris Jutzi,
- Abstract要約: 3Dガウシアン3DGSは3Dガウシアンを用いた3Dシーン再構築の強力なアプローチとして登場した。
本稿では,固有値由来の3次元形状特徴に基づく幾何学的損失項を3DGSの最適化プロセスに組み込む。
- 参考スコア(独自算出の注目度): 1.474723404975345
- License:
- Abstract: 3D Gaussian Splatting (3DGS) has emerged as a powerful approach for 3D scene reconstruction using 3D Gaussians. However, neither the centers nor surfaces of the Gaussians are accurately aligned to the object surface, complicating their direct use in point cloud and mesh reconstruction. Additionally, 3DGS typically produces floater artifacts, increasing the number of Gaussians and storage requirements. To address these issues, we present FeatureGS, which incorporates an additional geometric loss term based on an eigenvalue-derived 3D shape feature into the optimization process of 3DGS. The goal is to improve geometric accuracy and enhance properties of planar surfaces with reduced structural entropy in local 3D neighborhoods.We present four alternative formulations for the geometric loss term based on 'planarity' of Gaussians, as well as 'planarity', 'omnivariance', and 'eigenentropy' of Gaussian neighborhoods. We provide quantitative and qualitative evaluations on 15 scenes of the DTU benchmark dataset focusing on following key aspects: Geometric accuracy and artifact-reduction, measured by the Chamfer distance, and memory efficiency, evaluated by the total number of Gaussians. Additionally, rendering quality is monitored by Peak Signal-to-Noise Ratio. FeatureGS achieves a 30 % improvement in geometric accuracy, reduces the number of Gaussians by 90 %, and suppresses floater artifacts, while maintaining comparable photometric rendering quality. The geometric loss with 'planarity' from Gaussians provides the highest geometric accuracy, while 'omnivariance' in Gaussian neighborhoods reduces floater artifacts and number of Gaussians the most. This makes FeatureGS a strong method for geometrically accurate, artifact-reduced and memory-efficient 3D scene reconstruction, enabling the direct use of Gaussian centers for geometric representation.
- Abstract(参考訳): 3Dガウシアン3DGSは3Dガウシアンを用いた3Dシーン再構築の強力なアプローチとして登場した。
しかし、ガウスの中心も表面も正確には物体の表面と整列せず、点雲やメッシュの再構築において直接的に使用されるのが複雑である。
さらに、3DGSは通常、フローターのアーティファクトを生産し、ガウシアンの数とストレージ要件を増やしている。
これらの問題に対処するために,固有値由来の3次元形状特徴に基づく幾何学的損失項を3DGSの最適化プロセスに組み込んだFeatureGSを提案する。
本研究の目的は, 局所的な3次元近傍における構造エントロピーの低減による平面面の幾何精度の向上と特性の向上であり, ガウスの「平面性」に基づく幾何損失項の4つの定式化と, ガウス地区の「平面性」, 「一様性」, 「固有エントロピー」について述べる。
筆者らは,DTUベンチマークデータセットの15場面の定量的,質的な評価を行い,以下の重要な点に注目した: 幾何精度とアーティファクトの抽出,および,ガウスの総数によるメモリ効率について検討した。
さらに、レンダリング品質はPeak Signal-to-Noise Ratioによって監視される。
FeatureGSは、幾何精度を30%改善し、ガウスの数を90%削減し、フローターアーティファクトを抑えながら、同等のフォトメトリックレンダリング品質を維持している。
ガウスの「平面性」による幾何学的損失は、最も高い幾何学的精度をもたらす一方、ガウスの地区における「均等性」は、フローターのアーチファクトとガウス人の数を最も減少させる。
これにより、FeatureGSは幾何学的精度、アーティファクト再現、メモリ効率のよい3Dシーン再構成のための強力な手法となり、幾何学的表現にガウス中心を直接使用することができる。
関連論文リスト
- CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2は大規模なシーン再構築のための新しいアプローチである。
分解段階の密度化・深さ回帰手法を実装し, ぼやけたアーチファクトを除去し, 収束を加速する。
本手法は, 視覚的品質, 幾何学的精度, ストレージ, トレーニングコストの両立を図っている。
論文 参考訳(メタデータ) (2024-11-01T17:59:31Z) - Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis [11.236094544193605]
従来の幾何学に基づくSLAMシステムは、密度の高い3D再構成機能を持たない。
本稿では,新しいビュー合成技術である3次元ガウススプラッティングを組み込んだリアルタイムRGB-D SLAMシステムを提案する。
論文 参考訳(メタデータ) (2024-08-10T21:23:08Z) - Effective Rank Analysis and Regularization for Enhanced 3D Gaussian Splatting [33.01987451251659]
3D Gaussian Splatting(3DGS)は、高品質な3D再構成によるリアルタイムレンダリングが可能な有望な技術として登場した。
その可能性にもかかわらず、3DGSは針状アーティファクト、準最適ジオメトリー、不正確な正常といった課題に遭遇する。
正規化として有効ランクを導入し、ガウスの構造を制約する。
論文 参考訳(メタデータ) (2024-06-17T15:51:59Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本研究では,視覚的忠実度と前景の細部を高い圧縮比で保持する原理的感度プルーニングスコアを提案する。
また,トレーニングパイプラインを変更することなく,事前訓練した任意の3D-GSモデルに適用可能な複数ラウンドプルーファインパイプラインを提案する。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - Trim 3D Gaussian Splatting for Accurate Geometry Representation [72.00970038074493]
画像から正確な3次元形状を復元するためにTrim 3D Gaussian Splatting (TrimGS)を導入する。
実験および理論的解析により、比較的小さなガウススケールが複雑な詳細を表現・最適化する非無視因子であることが判明した。
元の3DGSと最先端の2DGSと組み合わせると、TrimGSは一貫してより正確な幾何学と高い知覚品質が得られる。
論文 参考訳(メタデータ) (2024-06-11T17:34:46Z) - RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) は、高品質でリアルタイムなレンダリングを実現するために、新しいビュー合成に非常に効果的であることが証明されている。
本研究は,DTUデータセット上のNeuraLangeloに匹敵するチャムファー距離誤差を導入し,元の3D GS法と同様の計算効率を維持する。
論文 参考訳(メタデータ) (2024-06-03T15:56:58Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting [58.95801720309658]
本稿では,3次元ガウス散乱(3DGS),すなわち3DGSRを用いた暗黙的表面再構成法を提案する。
重要な洞察は、暗黙の符号付き距離場(SDF)を3Dガウスに組み込んで、それらが整列され、共同最適化されるようにすることである。
実験により, 3DGSの効率とレンダリング品質を保ちながら, 高品質な3D表面再構成が可能な3DGSR法が実証された。
論文 参考訳(メタデータ) (2024-03-30T16:35:38Z) - NeuSG: Neural Implicit Surface Reconstruction with 3D Gaussian Splatting
Guidance [59.08521048003009]
本稿では,3次元ガウススプラッティングから高精細な表面を復元する神経暗黙的表面再構成パイプラインを提案する。
3Dガウススプラッティングの利点は、詳細な構造を持つ高密度の点雲を生成することができることである。
我々は3次元ガウスを極端に薄くすることで、表面に近い中心を引っ張るスケール正則化器を導入する。
論文 参考訳(メタデータ) (2023-12-01T07:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。