Planning with Vision-Language Models and a Use Case in Robot-Assisted Teaching
- URL: http://arxiv.org/abs/2501.17665v1
- Date: Wed, 29 Jan 2025 14:04:54 GMT
- Title: Planning with Vision-Language Models and a Use Case in Robot-Assisted Teaching
- Authors: Xuzhe Dang, Lada Kudláčková, Stefan Edelkamp,
- Abstract summary: This paper introduces Image2PDDL, a novel framework that leverages Vision-Language Models (VLMs) to automatically convert images of initial states and descriptions of goal states into PDDL problems.
We evaluate the framework on various domains, including standard planning domains like blocksworld and sliding tile puzzles, using datasets with multiple difficulty levels.
We will discuss a potential use case in robot-assisted teaching of students with Autism Spectrum Disorder.
- Score: 0.9217021281095907
- License:
- Abstract: Automating the generation of Planning Domain Definition Language (PDDL) with Large Language Model (LLM) opens new research topic in AI planning, particularly for complex real-world tasks. This paper introduces Image2PDDL, a novel framework that leverages Vision-Language Models (VLMs) to automatically convert images of initial states and descriptions of goal states into PDDL problems. By providing a PDDL domain alongside visual inputs, Imasge2PDDL addresses key challenges in bridging perceptual understanding with symbolic planning, reducing the expertise required to create structured problem instances, and improving scalability across tasks of varying complexity. We evaluate the framework on various domains, including standard planning domains like blocksworld and sliding tile puzzles, using datasets with multiple difficulty levels. Performance is assessed on syntax correctness, ensuring grammar and executability, and content correctness, verifying accurate state representation in generated PDDL problems. The proposed approach demonstrates promising results across diverse task complexities, suggesting its potential for broader applications in AI planning. We will discuss a potential use case in robot-assisted teaching of students with Autism Spectrum Disorder.
Related papers
- Generating Symbolic World Models via Test-time Scaling of Large Language Models [28.258707611580643]
Planning Domain Definition Language (PDDL) is leveraged as a planning abstraction that enables precise and formal state descriptions.
We introduce a simple yet effective algorithm, which first employs a Best-of-N sampling approach to improve the quality of the initial solution and then refines the solution in a fine-grained manner with verbalized machine learning.
Our method outperforms o1-mini by a considerable margin in the generation of PDDL domain, achieving over 50% success rate on two tasks.
arXiv Detail & Related papers (2025-02-07T07:52:25Z) - LLM-Generated Heuristics for AI Planning: Do We Even Need Domain-Independence Anymore? [87.71321254733384]
Large language models (LLMs) can generate planning approaches tailored to specific planning problems.
LLMs can achieve state-of-the-art performance on some standard IPC domains.
We discuss whether these results signify a paradigm shift and how they can complement existing planning approaches.
arXiv Detail & Related papers (2025-01-30T22:21:12Z) - Multi-Agent Planning Using Visual Language Models [2.2369578015657954]
Large Language Models (LLMs) and Visual Language Models (VLMs) are attracting increasing interest due to their improving performance and applications across various domains and tasks.
LLMs andVLMs can produce erroneous results, especially when a deep understanding of the problem domain is required.
We propose a multi-agent architecture for embodied task planning that operates without the need for specific data structures as input.
arXiv Detail & Related papers (2024-08-10T08:10:17Z) - Planetarium: A Rigorous Benchmark for Translating Text to Structured Planning Languages [20.62336315814875]
We introduce textitPlanetarium, a benchmark designed to evaluate language models' ability to generate PDDL code from natural language descriptions of planning tasks.
textitPlanetarium features a novel PDDL equivalence algorithm that flexibly evaluates the correctness of generated PDDL, along with a dataset of 145,918 text-to-PDDL pairs.
arXiv Detail & Related papers (2024-07-03T17:59:53Z) - VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web Tasks [93.85005277463802]
VisualWebArena is a benchmark designed to assess the performance of multimodal web agents on realistic tasks.
To perform on this benchmark, agents need to accurately process image-text inputs, interpret natural language instructions, and execute actions on websites to accomplish user-defined objectives.
arXiv Detail & Related papers (2024-01-24T18:35:21Z) - Image Translation as Diffusion Visual Programmers [52.09889190442439]
Diffusion Visual Programmer (DVP) is a neuro-symbolic image translation framework.
Our framework seamlessly embeds a condition-flexible diffusion model within the GPT architecture.
Extensive experiments demonstrate DVP's remarkable performance, surpassing concurrent arts.
arXiv Detail & Related papers (2024-01-18T05:50:09Z) - Visual AI and Linguistic Intelligence Through Steerability and
Composability [0.0]
This study explores the capabilities of multimodal large language models (LLMs) in handling challenging multistep tasks that integrate language and vision.
The research presents a series of 14 creatively and constructively diverse tasks, ranging from AI Lego Designing to AI Satellite Image Analysis.
arXiv Detail & Related papers (2023-11-18T22:01:33Z) - RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic
Control [140.48218261864153]
We study how vision-language models trained on Internet-scale data can be incorporated directly into end-to-end robotic control.
Our approach leads to performant robotic policies and enables RT-2 to obtain a range of emergent capabilities from Internet-scale training.
arXiv Detail & Related papers (2023-07-28T21:18:02Z) - HDDL 2.1: Towards Defining a Formalism and a Semantics for Temporal HTN
Planning [64.07762708909846]
Real world applications need modelling rich and diverse automated planning problems.
hierarchical task network (HTN) formalism does not allow to represent planning problems with numerical and temporal constraints.
We propose to fill the gap between HDDL and these operational needs and to extend HDDL by taking inspiration from PDDL 2.1.
arXiv Detail & Related papers (2023-06-12T18:21:23Z) - PaLM-E: An Embodied Multimodal Language Model [101.29116156731762]
We propose embodied language models to incorporate real-world continuous sensor modalities into language models.
We train these encodings end-to-end, in conjunction with a pre-trained large language model, for multiple embodied tasks.
Our largest model, PaLM-E-562B with 562B parameters, is a visual-language generalist with state-of-the-art performance on OK-VQA.
arXiv Detail & Related papers (2023-03-06T18:58:06Z) - HDDL 2.1: Towards Defining an HTN Formalism with Time [0.0]
Real world applications of planning, like in industry and robotics, require modelling rich and diverse scenarios.
Their resolution usually requires coordinated and concurrent action executions.
In several cases, such planning problems are naturally decomposed in a hierarchical way and expressed by a Hierarchical Task Network formalism.
This paper opens discussions on the semantics and the syntax needed to extend HDDL, and illustrate these needs with the modelling of an Earth Observing Satellite planning problem.
arXiv Detail & Related papers (2022-06-03T21:22:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.