Exact characterization of ε-Safe Decision Regions for exponential family distributions and Multi Cost SVM approximation
- URL: http://arxiv.org/abs/2501.17731v1
- Date: Wed, 29 Jan 2025 16:14:35 GMT
- Title: Exact characterization of ε-Safe Decision Regions for exponential family distributions and Multi Cost SVM approximation
- Authors: Alberto Carlevaro, Teodoro Alamo, Fabrizio Dabbene, Maurizio Mongelli,
- Abstract summary: We introduce a formal definition of epsilon-Safe Decision Region, a subset of the input space in which the prediction of a target (safe) class is probabilistically guaranteed.
Inspired by this limitation, we developed Multi Cost SVM, an SVM based algorithm that approximates the safe region and is also able to handle unbalanced data.
- Score: 2.225810431340323
- License:
- Abstract: Probabilistic guarantees on the prediction of data-driven classifiers are necessary to define models that can be considered reliable. This is a key requirement for modern machine learning in which the goodness of a system is measured in terms of trustworthiness, clearly dividing what is safe from what is unsafe. The spirit of this paper is exactly in this direction. First, we introduce a formal definition of {\epsilon}-Safe Decision Region, a subset of the input space in which the prediction of a target (safe) class is probabilistically guaranteed. Second, we prove that, when data come from exponential family distributions, the form of such a region is analytically determined and controllable by design parameters, i.e. the probability of sampling the target class and the confidence on the prediction. However, the request of having exponential data is not always possible. Inspired by this limitation, we developed Multi Cost SVM, an SVM based algorithm that approximates the safe region and is also able to handle unbalanced data. The research is complemented by experiments and code available for reproducibility.
Related papers
- Conformal Predictions for Probabilistically Robust Scalable Machine Learning Classification [1.757077789361314]
Conformal predictions make it possible to define reliable and robust learning algorithms.
They are essentially a method for evaluating whether an algorithm is good enough to be used in practice.
This paper defines a reliable learning framework for classification from the very beginning of its design.
arXiv Detail & Related papers (2024-03-15T14:59:24Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Distribution-free risk assessment of regression-based machine learning
algorithms [6.507711025292814]
We focus on regression algorithms and the risk-assessment task of computing the probability of the true label lying inside an interval defined around the model's prediction.
We solve the risk-assessment problem using the conformal prediction approach, which provides prediction intervals that are guaranteed to contain the true label with a given probability.
arXiv Detail & Related papers (2023-10-05T13:57:24Z) - Out of Distribution Detection via Domain-Informed Gaussian Process State
Space Models [22.24457254575906]
In order for robots to safely navigate in unseen scenarios, it is important to accurately detect out-of-training-distribution (OoD) situations online.
We propose a novel approach to embed existing domain knowledge in the kernel and (ii) an OoD online runtime monitor, based on receding-horizon predictions.
arXiv Detail & Related papers (2023-09-13T01:02:42Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Sampling-Based Robust Control of Autonomous Systems with Non-Gaussian
Noise [59.47042225257565]
We present a novel planning method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous system into a discrete-state model that captures noise by probabilistic transitions between states.
We capture these bounds in the transition probability intervals of a so-called interval Markov decision process (iMDP)
arXiv Detail & Related papers (2021-10-25T06:18:55Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Estimation of Accurate and Calibrated Uncertainties in Deterministic
models [0.8702432681310401]
We devise a method to transform a deterministic prediction into a probabilistic one.
We show that for doing so, one has to compromise between the accuracy and the reliability (calibration) of such a model.
We show several examples both with synthetic data, where the underlying hidden noise can accurately be recovered, and with large real-world datasets.
arXiv Detail & Related papers (2020-03-11T04:02:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.